SSL and internet security news

Monthly Archive: March 2018

Facebook and Cambridge Analytica

In the wake of the Cambridge Analytica scandal, news articles and commentators have focused on what Facebook knows about us. A lot, it turns out. It collects data from our posts, our likes, our photos, things we type and delete without posting, and things we do while not on Facebook and even when we’re offline. It buys data about us from others. And it can infer even more: our sexual orientation, political beliefs, relationship status, drug use, and other personality traits — even if we didn’t take the personality test that Cambridge Analytica developed.

But for every article about Facebook’s creepy stalker behavior, thousands of other companies are breathing a collective sigh of relief that it’s Facebook and not them in the spotlight. Because while Facebook is one of the biggest players in this space, there are thousands of other companies that spy on and manipulate us for profit.

Harvard Business School professor Shoshana Zuboff calls it “surveillance capitalism.” And as creepy as Facebook is turning out to be, the entire industry is far creepier. It has existed in secret far too long, and it’s up to lawmakers to force these companies into the public spotlight, where we can all decide if this is how we want society to operate and — if not — what to do about it.

There are 2,500 to 4,000 data brokers in the United States whose business is buying and selling our personal data. Last year, Equifax was in the news when hackers stole personal information on 150 million people, including Social Security numbers, birth dates, addresses, and driver’s license numbers.

You certainly didn’t give it permission to collect any of that information. Equifax is one of those thousands of data brokers, most of them you’ve never heard of, selling your personal information without your knowledge or consent to pretty much anyone who will pay for it.

Surveillance capitalism takes this one step further. Companies like Facebook and Google offer you free services in exchange for your data. Google’s surveillance isn’t in the news, but it’s startlingly intimate. We never lie to our search engines. Our interests and curiosities, hopes and fears, desires and sexual proclivities, are all collected and saved. Add to that the websites we visit that Google tracks through its advertising network, our Gmail accounts, our movements via Google Maps, and what it can collect from our smartphones.

That phone is probably the most intimate surveillance device ever invented. It tracks our location continuously, so it knows where we live, where we work, and where we spend our time. It’s the first and last thing we check in a day, so it knows when we wake up and when we go to sleep. We all have one, so it knows who we sleep with. Uber used just some of that information to detect one-night stands; your smartphone provider and any app you allow to collect location data knows a lot more.

Surveillance capitalism drives much of the internet. It’s behind most of the “free” services, and many of the paid ones as well. Its goal is psychological manipulation, in the form of personalized advertising to persuade you to buy something or do something, like vote for a candidate. And while the individualized profile-driven manipulation exposed by Cambridge Analytica feels abhorrent, it’s really no different from what every company wants in the end. This is why all your personal information is collected, and this is why it is so valuable. Companies that can understand it can use it against you.

None of this is new. The media has been reporting on surveillance capitalism for years. In 2015, I wrote a book about it. Back in 2010, the Wall Street Journal published an award-winning two-year series about how people are tracked both online and offline, titled “What They Know.”

Surveillance capitalism is deeply embedded in our increasingly computerized society, and if the extent of it came to light there would be broad demands for limits and regulation. But because this industry can largely operate in secret, only occasionally exposed after a data breach or investigative report, we remain mostly ignorant of its reach.

This might change soon. In 2016, the European Union passed the comprehensive General Data Protection Regulation, or GDPR. The details of the law are far too complex to explain here, but some of the things it mandates are that personal data of EU citizens can only be collected and saved for “specific, explicit, and legitimate purposes,” and only with explicit consent of the user. Consent can’t be buried in the terms and conditions, nor can it be assumed unless the user opts in. This law will take effect in May, and companies worldwide are bracing for its enforcement.

Because pretty much all surveillance capitalism companies collect data on Europeans, this will expose the industry like nothing else. Here’s just one example. In preparation for this law, PayPal quietly published a list of over 600 companies it might share your personal data with. What will it be like when every company has to publish this sort of information, and explicitly explain how it’s using your personal data? We’re about to find out.

In the wake of this scandal, even Mark Zuckerberg said that his industry probably should be regulated, although he’s certainly not wishing for the sorts of comprehensive regulation the GDPR is bringing to Europe.

He’s right. Surveillance capitalism has operated without constraints for far too long. And advances in both big data analysis and artificial intelligence will make tomorrow’s applications far creepier than today’s. Regulation is the only answer.

The first step to any regulation is transparency. Who has our data? Is it accurate? What are they doing with it? Who are they selling it to? How are they securing it? Can we delete it? I don’t see any hope of Congress passing a GDPR-like data protection law anytime soon, but it’s not too far-fetched to demand laws requiring these companies to be more transparent in what they’re doing.

One of the responses to the Cambridge Analytica scandal is that people are deleting their Facebook accounts. It’s hard to do right, and doesn’t do anything about the data that Facebook collects about people who don’t use Facebook. But it’s a start. The market can put pressure on these companies to reduce their spying on us, but it can only do that if we force the industry out of its secret shadows.

This essay previously appeared on CNN.com.

Powered by WPeMatico

Another Branch Prediction Attack

When Spectre and Meltdown were first announced earlier this year, pretty much everyone predicted that there would be many more attacks targeting branch prediction in microprocessors. Here’s another one:

In the new attack, an attacker primes the PHT and running branch instructions so that the PHT will always assume a particular branch is taken or not taken. The victim code then runs and makes a branch, which is potentially disturbing the PHT. The attacker then runs more branch instructions of its own to detect that disturbance to the PHT; the attacker knows that some branches should be predicted in a particular direction and tests to see if the victim’s code has changed that prediction.

The researchers looked only at Intel processors, using the attacks to leak information protected using Intel’s SGX (Software Guard Extensions), a feature found on certain chips to carve out small sections of encrypted code and data such that even the operating system (or virtualization software) cannot access it. They also described ways the attack could be used against address space layout randomization and to infer data in encryption and image libraries.

Research paper.

Powered by WPeMatico

Tracing Stolen Bitcoin

Ross Anderson has a really interesting paper on tracing stolen bitcoin. From a blog post:

Previous attempts to track tainted coins had used either the “poison” or the “haircut” method. Suppose I open a new address and pay into it three stolen bitcoin followed by seven freshly-mined ones. Then under poison, the output is ten stolen bitcoin, while under haircut it’s ten bitcoin that are marked 30% stolen. After thousands of blocks, poison tainting will blacklist millions of addresses, while with haircut the taint gets diffused, so neither is very effective at tracking stolen property. Bitcoin due-diligence services supplant haircut taint tracking with AI/ML, but the results are still not satisfactory.

We discovered that, back in 1816, the High Court had to tackle this problem in Clayton’s case, which involved the assets and liabilities of a bank that had gone bust. The court ruled that money must be tracked through accounts on the basis of first-in, first out (FIFO); the first penny into an account goes to satisfy the first withdrawal, and so on.

Ilia Shumailov has written software that applies FIFO tainting to the blockchain and the results are impressive, with a massive improvement in precision. What’s more, FIFO taint tracking is lossless, unlike haircut; so in addition to tracking a stolen coin forward to find where it’s gone, you can start with any UTXO and trace it backwards to see its entire ancestry. It’s not just good law; it’s good computer science too.

Powered by WPeMatico

Adding Backdoors at the Chip Level

Interesting research into undetectably adding backdoors into computer chips during manufacture: “Stealthy dopant-level hardware Trojans: extended version,” also available here:

Abstract: In recent years, hardware Trojans have drawn the attention of governments and industry as well as the scientific community. One of the main concerns is that integrated circuits, e.g., for military or critical-infrastructure applications, could be maliciously manipulated during the manufacturing process, which often takes place abroad. However, since there have been no reported hardware Trojans in practice yet, little is known about how such a Trojan would look like and how difficult it would be in practice to implement one. In this paper we propose an extremely stealthy approach for implementing hardware Trojans below the gate level, and we evaluate their impact on the security of the target device. Instead of adding additional circuitry to the target design, we insert our hardware Trojans by changing the dopant polarity of existing transistors. Since the modified circuit appears legitimate on all wiring layers (including all metal and polysilicon), our family of Trojans is resistant to most detection techniques, including fine-grain optical inspection and checking against “golden chips”. We demonstrate the effectiveness of our approach by inserting Trojans into two designs — a digital post-processing derived from Intel’s cryptographically secure RNG design used in the Ivy Bridge processors and a side-channel resistant SBox implementation¬≠ — and by exploring their detectability and their effects on security.

The moral is that this kind of technique is very difficult to detect.

Powered by WPeMatico

Friday Squid Blogging: Giant Squid Stealing Food from Each Other

An interesting hunting strategy:

Off of northern Spain, giant squid often feed on schools of fish called blue whiting. The schools swim 400 meters or less below the surface, while the squid prefer to hang out around a mile deep. The squid must ascend to hunt, probably seizing fish from below with their tentacles, then descend again. In this scenario, a squid could save energy by pirating food from its neighbor rather than hunting its own fish, Guerra says: If the target squid has already carried its prey back to the depths to eat, the pirate could save itself a trip up to the shallow water. Staying below would also protect a pirate from predators such as dolphins and sperm whales that hang around the fish schools.

If a pirate happened to kill its victim, it would also reduce competition. The scientists think that’s what happened with the Bares squid: Its tentacles were ripped off in the fight over food. “The victim, disoriented and wounded, could enter a warmer mass of water in which the efficiency of their blood decreases markedly,” the authors write in a recent paper in the journal Ecology. “In this way, the victim, almost asphyxiated, would be at the mercy of the marine currents, being dragged toward the coast.”

It’s called “food piracy.”

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Powered by WPeMatico