SSL and internet security news


Auto Added by WPeMatico

Data, Surveillance, and the AI Arms Race

According to foreign policy experts and the defense establishment, the United States is caught in an artificial intelligence arms race with China — one with serious implications for national security. The conventional version of this story suggests that the United States is at a disadvantage because of self-imposed restraints on the collection of data and the privacy of its citizens, while China, an unrestrained surveillance state, is at an advantage. In this vision, the data that China collects will be fed into its systems, leading to more powerful AI with capabilities we can only imagine today. Since Western countries can’t or won’t reap such a comprehensive harvest of data from their citizens, China will win the AI arms race and dominate the next century.

This idea makes for a compelling narrative, especially for those trying to justify surveillance — whether government- or corporate-run. But it ignores some fundamental realities about how AI works and how AI research is conducted.

Thanks to advances in machine learning, AI has flipped from theoretical to practical in recent years, and successes dominate public understanding of how it works. Machine learning systems can now diagnose pneumonia from X-rays, play the games of go and poker, and read human lips, all better than humans. They’re increasingly watching surveillance video. They are at the core of self-driving car technology and are playing roles in both intelligence-gathering and military operations. These systems monitor our networks to detect intrusions and look for spam and malware in our email.

And it’s true that there are differences in the way each country collects data. The United States pioneered “surveillance capitalism,” to use the Harvard University professor Shoshana Zuboff’s term, where data about the population is collected by hundreds of large and small companies for corporate advantage — and mutually shared or sold for profit The state picks up on that data, in cases such as the Centers for Disease Control and Prevention’s use of Google search data to map epidemics and evidence shared by alleged criminals on Facebook, but it isn’t the primary user.

China, on the other hand, is far more centralized. Internet companies collect the same sort of data, but it is shared with the government, combined with government-collected data, and used for social control. Every Chinese citizen has a national ID number that is demanded by most services and allows data to easily be tied together. In the western region of Xinjiang, ubiquitous surveillance is used to oppress the Uighur ethnic minority — although at this point there is still a lot of human labor making it all work. Everyone expects that this is a test bed for the entire country.

Data is increasingly becoming a part of control for the Chinese government. While many of these plans are aspirational at the moment — there isn’t, as some have claimed, a single “social credit score,” but instead future plans to link up a wide variety of systems — data collection is universally pushed as essential to the future of Chinese AI. One executive at search firm Baidu predicted that the country’s connected population will provide them with the raw data necessary to become the world’s preeminent tech power. China’s official goal is to become the world AI leader by 2030, aided in part by all of this massive data collection and correlation.

This all sounds impressive, but turning massive databases into AI capabilities doesn’t match technological reality. Current machine learning techniques aren’t all that sophisticated. All modern AI systems follow the same basic methods. Using lots of computing power, different machine learning models are tried, altered, and tried again. These systems use a large amount of data (the training set) and an evaluation function to distinguish between those models and variations that work well and those that work less well. After trying a lot of models and variations, the system picks the one that works best. This iterative improvement continues even after the system has been fielded and is in use.

So, for example, a deep learning system trying to do facial recognition will have multiple layers (hence the notion of “deep”) trying to do different parts of the facial recognition task. One layer will try to find features in the raw data of a picture that will help find a face, such as changes in color that will indicate an edge. The next layer might try to combine these lower layers into features like shapes, looking for round shapes inside of ovals that indicate eyes on a face. The different layers will try different features and will be compared by the evaluation function until the one that is able to give the best results is found, in a process that is only slightly more refined than trial and error.

Large data sets are essential to making this work, but that doesn’t mean that more data is automatically better or that the system with the most data is automatically the best system. Train a facial recognition algorithm on a set that contains only faces of white men, and the algorithm will have trouble with any other kind of face. Use an evaluation function that is based on historical decisions, and any past bias is learned by the algorithm. For example, mortgage loan algorithms trained on historic decisions of human loan officers have been found to implement redlining. Similarly, hiring algorithms trained on historical data manifest the same sexism as human staff often have. Scientists are constantly learning about how to train machine learning systems, and while throwing a large amount of data and computing power at the problem can work, more subtle techniques are often more successful. All data isn’t created equal, and for effective machine learning, data has to be both relevant and diverse in the right ways.

Future research advances in machine learning are focused on two areas. The first is in enhancing how these systems distinguish between variations of an algorithm. As different versions of an algorithm are run over the training data, there needs to be some way of deciding which version is “better.” These evaluation functions need to balance the recognition of an improvement with not over-fitting to the particular training data. Getting functions that can automatically and accurately distinguish between two algorithms based on minor differences in the outputs is an art form that no amount of data can improve.

The second is in the machine learning algorithms themselves. While much of machine learning depends on trying different variations of an algorithm on large amounts of data to see which is most successful, the initial formulation of the algorithm is still vitally important. The way the algorithms interact, the types of variations attempted, and the mechanisms used to test and redirect the algorithms are all areas of active research. (An overview of some of this work can be found here; even trying to limit the research to 20 papers oversimplifies the work being done in the field.) None of these problems can be solved by throwing more data at the problem.

The British AI company DeepMind’s success in teaching a computer to play the Chinese board game go is illustrative. Its AlphaGo computer program became a grandmaster in two steps. First, it was fed some enormous number of human-played games. Then, the game played itself an enormous number of times, improving its own play along the way. In 2016, AlphaGo beat the grandmaster Lee Sedol four games to one.

While the training data in this case, the human-played games, was valuable, even more important was the machine learning algorithm used and the function that evaluated the relative merits of different game positions. Just one year later, DeepMind was back with a follow-on system: AlphaZero. This go-playing computer dispensed entirely with the human-played games and just learned by playing against itself over and over again. It plays like an alien. (It also became a grandmaster in chess and shogi.)

These are abstract games, so it makes sense that a more abstract training process works well. But even something as visceral as facial recognition needs more than just a huge database of identified faces in order to work successfully. It needs the ability to separate a face from the background in a two-dimensional photo or video and to recognize the same face in spite of changes in angle, lighting, or shadows. Just adding more data may help, but not nearly as much as added research into what to do with the data once we have it.

Meanwhile, foreign-policy and defense experts are talking about AI as if it were the next nuclear arms race, with the country that figures it out best or first becoming the dominant superpower for the next century. But that didn’t happen with nuclear weapons, despite research only being conducted by governments and in secret. It certainly won’t happen with AI, no matter how much data different nations or companies scoop up.

It is true that China is investing a lot of money into artificial intelligence research: The Chinese government believes this will allow it to leapfrog other countries (and companies in those countries) and become a major force in this new and transformative area of computing — and it may be right. On the other hand, much of this seems to be a wasteful boondoggle. Slapping “AI” on pretty much anything is how to get funding. The Chinese Ministry of Education, for instance, promises to produce “50 world-class AI textbooks,” with no explanation of what that means.

In the democratic world, the government is neither the leading researcher nor the leading consumer of AI technologies. AI research is much more decentralized and academic, and it is conducted primarily in the public eye. Research teams keep their training data and models proprietary but freely publish their machine learning algorithms. If you wanted to work on machine learning right now, you could download Microsoft’s Cognitive Toolkit, Google’s Tensorflow, or Facebook’s Pytorch. These aren’t toy systems; these are the state-of-the art machine learning platforms.

AI is not analogous to the big science projects of the previous century that brought us the atom bomb and the moon landing. AI is a science that can be conducted by many different groups with a variety of different resources, making it closer to computer design than the space race or nuclear competition. It doesn’t take a massive government-funded lab for AI research, nor the secrecy of the Manhattan Project. The research conducted in the open science literature will trump research done in secret because of the benefits of collaboration and the free exchange of ideas.

While the United States should certainly increase funding for AI research, it should continue to treat it as an open scientific endeavor. Surveillance is not justified by the needs of machine learning, and real progress in AI doesn’t need it.

This essay was written with Jim Waldo, and previously appeared in Foreign Policy.

Powered by WPeMatico

Visiting the NSA

Yesterday, I visited the NSA. It was Cyber Command’s birthday, but that’s not why I was there. I visited as part of the Berklett Cybersecurity Project, run out of the Berkman Klein Center and funded by the Hewlett Foundation. (BERKman hewLETT — get it? We have a web page, but it’s badly out of date.)

It was a full day of meetings, all unclassified but under the Chatham House Rule. Gen. Nakasone welcomed us and took questions at the start. Various senior officials spoke with us on a variety of topics, but mostly focused on three areas:

  • Russian influence operations, both what the NSA and US Cyber Command did during the 2018 election and what they can do in the future;

  • China and the threats to critical infrastructure from untrusted computer hardware, both the 5G network and more broadly;

  • Machine learning, both how to ensure a ML system is compliant with all laws, and how ML can help with other compliance tasks.

It was all interesting. Those first two topics are ones that I am thinking and writing about, and it was good to hear their perspective. I find that I am much more closely aligned with the NSA about cybersecurity than I am about privacy, which made the meeting much less fraught than it would have been if we were discussing Section 702 of the FISA Amendments Act, Section 215 the USA Freedom Act (up for renewal next year), or any 4th Amendment violations. I don’t think we’re past those issues by any means, but they make up less of what I am working on.

Powered by WPeMatico

Maliciously Tampering with Medical Imagery

In what I am sure is only a first in many similar demonstrations, researchers are able to add or remove cancer signs from CT scans. The results easily fool radiologists.

I don’t think the medical device industry has thought at all about data integrity and authentication issues. In a world where sensor data of all kinds is undetectably manipulatable, they’re going to have to start.

Research paper. Slashdot thread.

Powered by WPeMatico

Adversarial Machine Learning against Tesla’s Autopilot

Researchers have been able to fool Tesla’s autopilot in a variety of ways, including convincing it to drive into oncoming traffic. It requires the placement of stickers on the road.

Abstract: Keen Security Lab has maintained the security research work on Tesla vehicle and shared our research results on Black Hat USA 2017 and 2018 in a row. Based on the ROOT privilege of the APE (Tesla Autopilot ECU, software version 18.6.1), we did some further interesting research work on this module. We analyzed the CAN messaging functions of APE, and successfully got remote control of the steering system in a contact-less way. We used an improved optimization algorithm to generate adversarial examples of the features (autowipers and lane recognition) which make decisions purely based on camera data, and successfully achieved the adversarial example attack in the physical world. In addition, we also found a potential high-risk design weakness of the lane recognition when the vehicle is in Autosteer mode. The whole article is divided into four parts: first a brief introduction of Autopilot, after that we will introduce how to send control commands from APE to control the steering system when the car is driving. In the last two sections, we will introduce the implementation details of the autowipers and lane recognition features, as well as our adversarial example attacking methods in the physical world. In our research, we believe that we made three creative contributions:

  1. We proved that we can remotely gain the root privilege of APE and control the steering system.
  2. We proved that we can disturb the autowipers function by using adversarial examples in the physical world.
  3. We proved that we can mislead the Tesla car into the reverse lane with minor changes on the road.

You can see the stickers in this photo. They’re unobtrusive.

This is machine learning’s big problem, and I think solving it is a lot harder than many believe.

Powered by WPeMatico

Machine Learning to Detect Software Vulnerabilities

No one doubts that artificial intelligence (AI) and machine learning (ML) will transform cybersecurity. We just don’t know how, or when. While the literature generally focuses on the different uses of AI by attackers and defenders ­ and the resultant arms race between the two ­ I want to talk about software vulnerabilities.

All software contains bugs. The reason is basically economic: The market doesn’t want to pay for quality software. With a few exceptions, such as the space shuttle, the market prioritizes fast and cheap over good. The result is that any large modern software package contains hundreds or thousands of bugs.

Some percentage of bugs are also vulnerabilities, and a percentage of those are exploitable vulnerabilities, meaning an attacker who knows about them can attack the underlying system in some way. And some percentage of those are discovered and used. This is why your computer and smartphone software is constantly being patched; software vendors are fixing bugs that are also vulnerabilities that have been discovered and are being used.

Everything would be better if software vendors found and fixed all bugs during the design and development process, but, as I said, the market doesn’t reward that kind of delay and expense. AI, and machine learning in particular, has the potential to forever change this trade-off.

The problem of finding software vulnerabilities seems well-suited for ML systems. Going through code line by line is just the sort of tedious problem that computers excel at, if we can only teach them what a vulnerability looks like. There are challenges with that, of course, but there is already a healthy amount of academic literature on the topic — and research is continuing. There’s every reason to expect ML systems to get better at this as time goes on, and some reason to expect them to eventually become very good at it.

Finding vulnerabilities can benefit both attackers and defenders, but it’s not a fair fight. When an attacker’s ML system finds a vulnerability in software, the attacker can use it to compromise systems. When a defender’s ML system finds the same vulnerability, he or she can try to patch the system or program network defenses to watch for and block code that tries to exploit it.

But when the same system is in the hands of a software developer who uses it to find the vulnerability before the software is ever released, the developer fixes it so it can never be used in the first place. The ML system will probably be part of his or her software design tools and will automatically find and fix vulnerabilities while the code is still in development.

Fast-forward a decade or so into the future. We might say to each other, “Remember those years when software vulnerabilities were a thing, before ML vulnerability finders were built into every compiler and fixed them before the software was ever released? Wow, those were crazy years.” Not only is this future possible, but I would bet on it.

Getting from here to there will be a dangerous ride, though. Those vulnerability finders will first be unleashed on existing software, giving attackers hundreds if not thousands of vulnerabilities to exploit in real-world attacks. Sure, defenders can use the same systems, but many of today’s Internet of Things systems have no engineering teams to write patches and no ability to download and install patches. The result will be hundreds of vulnerabilities that attackers can find and use.

But if we look far enough into the horizon, we can see a future where software vulnerabilities are a thing of the past. Then we’ll just have to worry about whatever new and more advanced attack techniques those AI systems come up with.

This essay previously appeared on

Powered by WPeMatico

Using Machine Learning to Create Fake Fingerprints

Researchers are able to create fake fingerprints that result in a 20% false-positive rate.

The problem is that these sensors obtain only partial images of users’ fingerprints — at the points where they make contact with the scanner. The paper noted that since partial prints are not as distinctive as complete prints, the chances of one partial print getting matched with another is high.

The artificially generated prints, dubbed DeepMasterPrints by the researchers, capitalize on the aforementioned vulnerability to accurately imitate one in five fingerprints in a database. The database was originally supposed to have only an error rate of one in a thousand.

Another vulnerability exploited by the researchers was the high prevalence of some natural fingerprint features such as loops and whorls, compared to others. With this understanding, the team generated some prints that contain several of these common features. They found that these artificial prints were more likely to match with other prints than would be normally possible.

If this result is robust — and I assume it will be improved upon over the coming years — it will make the current generation of fingerprint readers obsolete as secure biometrics. It also opens a new chapter in the arms race between biometric authentication systems and fake biometrics that can fool them.

More interestingly, I wonder if similar techniques can be brought to bear against other biometrics are well.

Research paper.

Slashdot thread

Powered by WPeMatico

Identifying Programmers by their Coding Style

Fascinating research de-anonymizing code — from either source code or compiled code:

Rachel Greenstadt, an associate professor of computer science at Drexel University, and Aylin Caliskan, Greenstadt’s former PhD student and now an assistant professor at George Washington University, have found that code, like other forms of stylistic expression, are not anonymous. At the DefCon hacking conference Friday, the pair will present a number of studies they’ve conducted using machine learning techniques to de-anonymize the authors of code samples. Their work could be useful in a plagiarism dispute, for instance, but it also has privacy implications, especially for the thousands of developers who contribute open source code to the world.

Powered by WPeMatico

Detecting Phishing Sites with Machine Learning

Really interesting article:

A trained eye (or even a not-so-trained one) can discern when something phishy is going on with a domain or subdomain name. There are search tools, such as, that allow humans to specifically search through the massive pile of certificate log entries for sites that spoof certain brands or functions common to identity-processing sites. But it’s not something humans can do in real time very well — which is where machine learning steps in.

StreamingPhish and the other tools apply a set of rules against the names within certificate log entries. In StreamingPhish’s case, these rules are the result of guided learning — a corpus of known good and bad domain names is processed and turned into a “classifier,” which (based on my anecdotal experience) can then fairly reliably identify potentially evil websites.

Powered by WPeMatico