SSL and internet security news

gps

Auto Added by WPeMatico

Tracking People Without GPS

Interesting research:

The trick in accurately tracking a person with this method is finding out what kind of activity they’re performing. Whether they’re walking, driving a car, or riding in a train or airplane, it’s pretty easy to figure out when you know what you’re looking for.

The sensors can determine how fast a person is traveling and what kind of movements they make. Moving at a slow pace in one direction indicates walking. Going a little bit quicker but turning at 90-degree angles means driving. Faster yet, we’re in train or airplane territory. Those are easy to figure out based on speed and air pressure.

After the app determines what you’re doing, it uses the information it collects from the sensors. The accelerometer relays your speed, the magnetometer tells your relation to true north, and the barometer offers up the air pressure around you and compares it to publicly available information. It checks in with The Weather Channel to compare air pressure data from the barometer to determine how far above sea level you are. Google Maps and data offered by the US Geological Survey Maps provide incredibly detailed elevation readings.

Once it has gathered all of this information and determined the mode of transportation you’re currently taking, it can then begin to narrow down where you are. For flights, four algorithms begin to estimate the target’s location and narrows down the possibilities until its error rate hits zero.

If you’re driving, it can be even easier. The app knows the time zone you’re in based on the information your phone has provided to it. It then accesses information from your barometer and magnetometer and compares it to information from publicly available maps and weather reports. After that, it keeps track of the turns you make. With each turn, the possible locations whittle down until it pinpoints exactly where you are.

To demonstrate how accurate it is, researchers did a test run in Philadelphia. It only took 12 turns before the app knew exactly where the car was.

This is a good example of how powerful synthesizing information from disparate data sources can be. We spend too much time worried about individual data collection systems, and not enough about analysis techniques of those systems.

Research paper.

Powered by WPeMatico

GPS Spoofing Attacks

Wired has a story about a possible GPS spoofing attack by Russia:

After trawling through AIS data from recent years, evidence of spoofing becomes clear. Goward says GPS data has placed ships at three different airports and there have been other interesting anomalies. “We would find very large oil tankers who could travel at the maximum speed at 15 knots,” says Goward, who was formerly director for Marine Transportation Systems at the US Coast Guard. “Their AIS, which is powered by GPS, would be saying they had sped up to 60 to 65 knots for an hour and then suddenly stopped. They had done that several times.”

All of the evidence from the Black Sea points towards a co-ordinated attempt to disrupt GPS. A recently published report from NRK found that 24 vessels appeared at Gelendzhik airport around the same time as the Atria. When contacted, a US Coast Guard representative refused to comment on the incident, saying any GPS disruption that warranted further investigation would be passed onto the Department of Defence.

“It looks like a sophisticated attack, by somebody who knew what they were doing and were just testing the system,” Bonenberg says. Humphreys told NRK it “strongly” looks like a spoofing incident. Fire Eye’s Brubaker, agreed, saying the activity looked intentional. Goward is also confident that GPS were purposely disrupted. “What this case shows us is there are entities out there that are willing and eager to disrupt satellite navigation systems for whatever reason and they can do it over a fairly large area and in a sophisticated way,” he says. “They’re not just broadcasting a stronger signal and denying service this is worse they’re providing hazardously misleading information.”

Powered by WPeMatico

Programming No-Fly Zones into Drones

DJI is programming no-fly zones into its drone software.

Here’s how it’ll work. The update will add a list of GPS coordinates to the drone’s computer that tells it not to fly around the Washington D.C. area. When users are within a 15-mile restricted zone, the drone’s motors won’t spin up, preventing it from taking off.

If this sounds like digital rights management, it basically is. And it will fail in all the ways that DRM fails. Cory Doctorow has explained it all very well.

Powered by WPeMatico