SSL and internet security news


Auto Added by WPeMatico

Security Vulnerabilities in Certificate Pinning

New research found that many banks offer certificate pinning as a security feature, but fail to authenticate the hostname. This leaves the systems open to man-in-the-middle attacks.

From the paper:

Abstract: Certificate verification is a crucial stage in the establishment of a TLS connection. A common security flaw in TLS implementations is the lack of certificate hostname verification but, in general, this is easy to detect. In security-sensitive applications, the usage of certificate pinning is on the rise. This paper shows that certificate pinning can (and often does) hide the lack of proper hostname verification, enabling MITM attacks. Dynamic (black-box) detection of this vulnerability would typically require the tester to own a high security certificate from the same issuer (and often same intermediate CA) as the one used by the app. We present Spinner, a new tool for black-box testing for this vulnerability at scale that does not require purchasing any certificates. By redirecting traffic to websites which use the relevant certificates and then analysing the (encrypted) network traffic we are able to determine whether the hostname check is correctly done, even in the presence of certificate pinning. We use Spinner to analyse 400 security-sensitive Android and iPhone apps. We found that 9 apps had this flaw, including two of the largest banks in the world: Bank of America and HSBC. We also found that TunnelBear, one of the most popular VPN apps was also vulnerable. These apps have a joint user base of tens of millions of users.

News article.

Powered by WPeMatico

Vulnerability in Amazon Key

Amazon Key is an IoT door lock that can enable one-time access codes for delivery people. To further secure that system, Amazon sells Cloud Cam, a camera that watches the door to ensure that delivery people don’t abuse their one-time access privilege.

Cloud Cam has been hacked:

But now security researchers have demonstrated that with a simple program run from any computer in Wi-Fi range, that camera can be not only disabled but frozen. A viewer watching its live or recorded stream sees only a closed door, even as their actual door is opened and someone slips inside. That attack would potentially enable rogue delivery people to stealthily steal from Amazon customers, or otherwise invade their inner sanctum.

And while the threat of a camera-hacking courier seems an unlikely way for your house to be burgled, the researchers argue it potentially strips away a key safeguard in Amazon’s security system.

Amazon is patching the system.

Powered by WPeMatico

New White House Announcement on the Vulnerability Equities Process

The White House has released a new version of the Vulnerabilities Equities Process (VEP). This is the inter-agency process by which the US government decides whether to inform the software vendor of a vulnerability it finds, or keep it secret and use it to eavesdrop on or attack other systems. You can read the new policy or the fact sheet, but the best place to start is Cybersecurity Coordinator Rob Joyce’s blog post.

In considering a way forward, there are some key tenets on which we can build a better process.

Improved transparency is critical. The American people should have confidence in the integrity of the process that underpins decision making about discovered vulnerabilities. Since I took my post as Cybersecurity Coordinator, improving the VEP and ensuring its transparency have been key priorities, and we have spent the last few months reviewing our existing policy in order to improve the process and make key details about the VEP available to the public. Through these efforts, we have validated much of the existing process and ensured a rigorous standard that considers many potential equities.

The interests of all stakeholders must be fairly represented. At a high level we consider four major groups of equities: defensive equities; intelligence / law enforcement / operational equities; commercial equities; and international partnership equities. Additionally, ordinary people want to know the systems they use are resilient, safe, and sound. These core considerations, which have been incorporated into the VEP Charter, help to standardize the process by which decision makers weigh the benefit to national security and the national interest when deciding whether to disclose or restrict knowledge of a vulnerability.

Accountability of the process and those who operate it is important to establish confidence in those served by it. Our public release of the unclassified portions Charter will shed light on aspects of the VEP that were previously shielded from public review, including who participates in the VEP’s governing body, known as the Equities Review Board. We make it clear that departments and agencies with protective missions participate in VEP discussions, as well as other departments and agencies that have broader equities, like the Department of State and the Department of Commerce. We also clarify what categories of vulnerabilities are submitted to the process and ensure that any decision not to disclose a vulnerability will be reevaluated regularly. There are still important reasons to keep many of the specific vulnerabilities evaluated in the process classified, but we will release an annual report that provides metrics about the process to further inform the public about the VEP and its outcomes.

Our system of government depends on informed and vigorous dialogue to discover and make available the best ideas that our diverse society can generate. This publication of the VEP Charter will likely spark discussion and debate. This discourse is important. I also predict that articles will make breathless claims of “massive stockpiles” of exploits while describing the issue. That simply isn’t true. The annual reports and transparency of this effort will reinforce that fact.

Mozilla is pleased with the new charter. I am less so; it looks to me like the same old policy with some new transparency measures — which I’m not sure I trust. The devil is in the details, and we don’t know the details — and it has giant loopholes that pretty much anything can fall through:

The United States Government’s decision to disclose or restrict vulnerability information could be subject to restrictions by partner agreements and sensitive operations. Vulnerabilities that fall within these categories will be cataloged by the originating Department/Agency internally and reported directly to the Chair of the ERB. The details of these categories are outlined in Annex C, which is classified. Quantities of excepted vulnerabilities from each department and agency will be provided in ERB meetings to all members.

This is me from last June:

There’s a lot we don’t know about the VEP. The Washington Post says that the NSA used EternalBlue “for more than five years,” which implies that it was discovered after the 2010 process was put in place. It’s not clear if all vulnerabilities are given such consideration, or if bugs are periodically reviewed to determine if they should be disclosed. That said, any VEP that allows something as dangerous as EternalBlue — or the Cisco vulnerabilities that the Shadow Brokers leaked last August to remain unpatched for years isn’t serving national security very well. As a former NSA employee said, the quality of intelligence that could be gathered was “unreal.” But so was the potential damage. The NSA must avoid hoarding vulnerabilities.

I stand by that, and am not sure the new policy changes anything.

More commentary.

Here’s more about the Windows vulnerabilities hoarded by the NSA and released by the Shadow Brokers.

Powered by WPeMatico

Security Flaw in Infineon Smart Cards and TPMs

A security flaw in Infineon smart cards and TPMs allows an attacker to recover private keys from the public keys. Basically, the key generation algorithm sometimes creates public keys that are vulnerable to Coppersmith’s attack:

While all keys generated with the library are much weaker than they should be, it’s not currently practical to factorize all of them. For example, 3072-bit and 4096-bit keys aren’t practically factorable. But oddly enough, the theoretically stronger, longer 4096-bit key is much weaker than the 3072-bit key and may fall within the reach of a practical (although costly) factorization if the researchers’ method improves.

To spare time and cost, attackers can first test a public key to see if it’s vulnerable to the attack. The test is inexpensive, requires less than 1 millisecond, and its creators believe it produces practically zero false positives and zero false negatives. The fingerprinting allows attackers to expend effort only on keys that are practically factorizable.

This is the flaw in the Estonian national ID card we learned about last month.

The paper isn’t online yet. I’ll post it when it is.

Ouch. This is a bad vulnerability, and it’s in systems — like the Estonian national ID card — that are critical.

Powered by WPeMatico

Impersonating iOS Password Prompts

This is an interesting security vulnerability: because it is so easy to impersonate iOS password prompts, a malicious app can steal your password just by asking.

Why does this work?

iOS asks the user for their iTunes password for many reasons, the most common ones are recently installed iOS operating system updates, or iOS apps that are stuck during installation.

As a result, users are trained to just enter their Apple ID password whenever iOS prompts you to do so. However, those popups are not only shown on the lock screen, and the home screen, but also inside random apps, e.g. when they want to access iCloud, GameCenter or In-App-Purchases.

This could easily be abused by any app, just by showing an UIAlertController, that looks exactly like the system dialog.

Even users who know a lot about technology have a hard time detecting that those alerts are phishing attacks.

The essay proposes some solutions, but I’m not sure they’ll work. We’re all trained to trust our computers and the applications running on them.

Powered by WPeMatico

ISO Rejects NSA Encryption Algorithms

The ISO has decided not to approve two NSA-designed block encryption algorithms: Speck and Simon. It’s because the NSA is not trusted to put security ahead of surveillance:

A number of them voiced their distrust in emails to one another, seen by Reuters, and in written comments that are part of the process. The suspicions stem largely from internal NSA documents disclosed by Snowden that showed the agency had previously plotted to manipulate standards and promote technology it could penetrate. Budget documents, for example, sought funding to “insert vulnerabilities into commercial encryption systems.”

More than a dozen of the experts involved in the approval process for Simon and Speck feared that if the NSA was able to crack the encryption techniques, it would gain a “back door” into coded transmissions, according to the interviews and emails and other documents seen by Reuters.

“I don’t trust the designers,” Israeli delegate Orr Dunkelman, a computer science professor at the University of Haifa, told Reuters, citing Snowden’s papers. “There are quite a lot of people in NSA who think their job is to subvert standards. My job is to secure standards.”

I don’t trust the NSA, either.

Powered by WPeMatico

Bluetooth Vulnerabilities

A bunch of Bluetooth vulnerabilities are being reported, some pretty nasty.

BlueBorne concerns us because of the medium by which it operates. Unlike the majority of attacks today, which rely on the internet, a BlueBorne attack spreads through the air. This works similarly to the two less extensive vulnerabilities discovered recently in a Broadcom Wi-Fi chip by Project Zero and Exodus. The vulnerabilities found in Wi-Fi chips affect only the peripherals of the device, and require another step to take control of the device. With BlueBorne, attackers can gain full control right from the start. Moreover, Bluetooth offers a wider attacker surface than WiFi, almost entirely unexplored by the research community and hence contains far more vulnerabilities.

Airborne attacks, unfortunately, provide a number of opportunities for the attacker. First, spreading through the air renders the attack much more contagious, and allows it to spread with minimum effort. Second, it allows the attack to bypass current security measures and remain undetected, as traditional methods do not protect from airborne threats. Airborne attacks can also allow hackers to penetrate secure internal networks which are “air gapped,” meaning they are disconnected from any other network for protection. This can endanger industrial systems, government agencies, and critical infrastructure.

Finally, unlike traditional malware or attacks, the user does not have to click on a link or download a questionable file. No action by the user is necessary to enable the attack.

Fully patched Windows and iOS systems are protected; Linux coming soon.

Powered by WPeMatico

Security Vulnerabilities in AT&T Routers

They’re actually Arris routers, sold or given away by AT&T. There are several security vulnerabilities, some of them very serious. They can be fixed, but because these are routers it takes some skill. We don’t know how many routers are affected, and estimates range from thousands to 138,000.

Among the vulnerabilities are hardcoded credentials, which can allow “root” remote access to an affected device, giving an attacker full control over the router. An attacker can connect to an affected router and log-in with a publicly-disclosed username and password, granting access to the modem’s menu-driven shell. An attacker can view and change the Wi-Fi router name and password, and alter the network’s setup, such as rerouting internet traffic to a malicious server.

The shell also allows the attacker to control a module that’s dedicated to injecting advertisements into unencrypted web traffic, a common tactic used by internet providers and other web companies. Hutchins said that there was “no clear evidence” to suggest the module was running but noted that it was still vulnerable, allowing an attacker to inject their own money-making ad campaigns or malware.

I have written about router vulnerabilities, and why the economics of their production makes them inevitable.

Powered by WPeMatico

Unfixable Automobile Computer Security Vulnerability

There is an unpatchable vulnerability that affects most modern cars. It’s buried in the Controller Area Network (CAN):

Researchers say this flaw is not a vulnerability in the classic meaning of the word. This is because the flaw is more of a CAN standard design choice that makes it unpatchable.

Patching the issue means changing how the CAN standard works at its lowest levels. Researchers say car manufacturers can only mitigate the vulnerability via specific network countermeasures, but cannot eliminate it entirely.

Details on how the attack works are here:

The CAN messages, including errors, are called “frames.” Our attack focuses on how CAN handles errors. Errors arise when a device reads values that do not correspond to the original expected value on a frame. When a device detects such an event, it writes an error message onto the CAN bus in order to “recall” the errant frame and notify the other devices to entirely ignore the recalled frame. This mishap is very common and is usually due to natural causes, a transient malfunction, or simply by too many systems and modules trying to send frames through the CAN at the same time.

If a device sends out too many errors, then­ — as CAN standards dictate — ­it goes into a so-called Bus Off state, where it is cut off from the CAN and prevented from reading and/or writing any data onto the CAN. This feature is helpful in isolating clearly malfunctioning devices and stops them from triggering the other modules/systems on the CAN.

This is the exact feature that our attack abuses. Our attack triggers this particular feature by inducing enough errors such that a targeted device or system on the CAN is made to go into the Bus Off state, and thus rendered inert/inoperable. This, in turn, can drastically affect the car’s performance to the point that it becomes dangerous and even fatal, especially when essential systems like the airbag system or the antilock braking system are deactivated. All it takes is a specially-crafted attack device, introduced to the car’s CAN through local access, and the reuse of frames already circulating in the CAN rather than injecting new ones (as previous attacks in this manner have done).

Slashdot thread.

Powered by WPeMatico