SSL and internet security news


Auto Added by WPeMatico

Zoom Vulnerability

The Zoom conferencing app has a vulnerability that allows someone to remotely take over the computer’s camera.

It’s a bad vulnerability, made worse by the fact that it remains even if you uninstall the Zoom app:

This vulnerability allows any website to forcibly join a user to a Zoom call, with their video camera activated, without the user’s permission.

On top of this, this vulnerability would have allowed any webpage to DOS (Denial of Service) a Mac by repeatedly joining a user to an invalid call.

Additionally, if you’ve ever installed the Zoom client and then uninstalled it, you still have a localhost web server on your machine that will happily re-install the Zoom client for you, without requiring any user interaction on your behalf besides visiting a webpage. This re-install ‘feature’ continues to work to this day.

Zoom didn’t take the vulnerability seriously:

This vulnerability was originally responsibly disclosed on March 26, 2019. This initial report included a proposed description of a ‘quick fix’ Zoom could have implemented by simply changing their server logic. It took Zoom 10 days to confirm the vulnerability. The first actual meeting about how the vulnerability would be patched occurred on June 11th, 2019, only 18 days before the end of the 90-day public disclosure deadline. During this meeting, the details of the vulnerability were confirmed and Zoom’s planned solution was discussed. However, I was very easily able to spot and describe bypasses in their planned fix. At this point, Zoom was left with 18 days to resolve the vulnerability. On June 24th after 90 days of waiting, the last day before the public disclosure deadline, I discovered that Zoom had only implemented the ‘quick fix’ solution originally suggested.

This is why we disclose vulnerabilities. Now, finally, Zoom is taking this seriously and fixing it for real.

Powered by WPeMatico

Thangrycat: A Serious Cisco Vulnerability


Thangrycat is caused by a series of hardware design flaws within Cisco’s Trust Anchor module. First commercially introduced in 2013, Cisco Trust Anchor module (TAm) is a proprietary hardware security module used in a wide range of Cisco products, including enterprise routers, switches and firewalls. TAm is the root of trust that underpins all other Cisco security and trustworthy computing mechanisms in these devices. Thangrycat allows an attacker to make persistent modification to the Trust Anchor module via FPGA bitstream modification, thereby defeating the secure boot process and invalidating Cisco’s chain of trust at its root. While the flaws are based in hardware, Thangrycat can be exploited remotely without any need for physical access. Since the flaws reside within the hardware design, it is unlikely that any software security patch will fully resolve the fundamental security vulnerability.

From a news article:

Thrangrycat is awful for two reasons. First, if a hacker exploits this weakness, they can do whatever they want to your routers. Second, the attack can happen remotely ­ it’s a software vulnerability. But the fix can only be applied at the hardware level. Like, physical router by physical router. In person. Yeesh.

That said, Thrangrycat only works once you have administrative access to the device. You need a two-step attack in order to get Thrangrycat working. Attack #1 gets you remote administrative access, Attack #2 is Thrangrycat. Attack #2 can’t happen without Attack #1. Cisco can protect you from Attack #1 by sending out a software update. If your I.T. people have your systems well secured and are applying updates and patches consistently and you’re not a regular target of nation-state actors, you’re relatively safe from Attack #1, and therefore, pretty safe from Thrangrycat.

Unfortunately, Attack #1 is a garden variety vulnerability. Many systems don’t even have administrative access configured correctly. There’s opportunity for Thrangrycat to be exploited.

And from Boing Boing:

Thangrycat relies on attackers being able to run processes as the system’s administrator, and Red Balloon, the security firm that disclosed the vulnerability, also revealed a defect that allows attackers to run code as admin.

It’s tempting to dismiss the attack on the trusted computing module as a ho-hum flourish: after all, once an attacker has root on your system, all bets are off. But the promise of trusted computing is that computers will be able to detect and undo this kind of compromise, by using a separate, isolated computer to investigate and report on the state of the main system (Huang and Snowden call this an introspection engine). Once this system is compromised, it can be forced to give false reports on the state of the system: for example, it might report that its OS has been successfully updated to patch a vulnerability when really the update has just been thrown away.

As Charlie Warzel and Sarah Jeong discuss in the New York Times, this is an attack that can be executed remotely, but can only be detected by someone physically in the presence of the affected system (and only then after a very careful inspection, and there may still be no way to do anything about it apart from replacing the system or at least the compromised component).

Powered by WPeMatico

Another Intel Chip Flaw

Remember the Spectre and Meltdown attacks from last year? They were a new class of attacks against complex CPUs, finding subliminal channels in optimization techniques that allow hackers to steal information. Since their discovery, researchers have found additional similar vulnerabilities.

A whole bunch more have just been discovered.

I don’t think we’re finished yet. A year and a half ago I wrote: “But more are coming, and they’ll be worse. 2018 will be the year of microprocessor vulnerabilities, and it’s going to be a wild ride.” I think more are still coming.

Powered by WPeMatico

WhatsApp Vulnerability Fixed

WhatsApp fixed a devastating vulnerability that allowed someone to remotely hack a phone by initiating a WhatsApp voice call. The recipient didn’t even have to answer the call.

The Israeli cyber-arms manufacturer NSO Group is believed to be behind the exploit, but of course there is no definitive proof.

If you use WhatsApp, update your app immediately.

Powered by WPeMatico

Leaked NSA Hacking Tools

In 2016, a hacker group calling itself the Shadow Brokers released a trove of 2013 NSA hacking tools and related documents. Most people believe it is a front for the Russian government. Since, then the vulnerabilities and tools have been used by both government and criminals, and put the NSA’s ability to secure its own cyberweapons seriously into question.

Now we have learned that the Chinese used the tools fourteen months before the Shadow Brokers released them.

Does this mean that both the Chinese and the Russians stole the same set of NSA tools? Did the Russians steal them from the Chinese, who stole them from us? Did it work the other way? I don’t think anyone has any idea. But this certainly illustrates how dangerous it is for the NSA — or US Cyber Command — to hoard zero-day vulnerabilities.

Powered by WPeMatico

Vulnerabilities in the WPA3 Wi-Fi Security Protocol

Researchers have found several vulnerabilities in the WPA3 Wi-Fi security protocol:

The design flaws we discovered can be divided in two categories. The first category consists of downgrade attacks against WPA3-capable devices, and the second category consists of weaknesses in the Dragonfly handshake of WPA3, which in the Wi-Fi standard is better known as the Simultaneous Authentication of Equals (SAE) handshake. The discovered flaws can be abused to recover the password of the Wi-Fi network, launch resource consumption attacks, and force devices into using weaker security groups. All attacks are against home networks (i.e. WPA3-Personal), where one password is shared among all users.

News article. Research paper: “Dragonblood: A Security Analysis of WPA3’s SAE Handshake“:

Abstract: The WPA3 certification aims to secure Wi-Fi networks, and provides several advantages over its predecessor WPA2, such as protection against offline dictionary attacks and forward secrecy. Unfortunately, we show that WPA3 is affected by several design flaws,and analyze these flaws both theoretically and practically. Most prominently, we show that WPA3’s Simultaneous Authentication of Equals (SAE) handshake, commonly known as Dragonfly, is affected by password partitioning attacks. These attacks resemble dictionary attacks and allow an adversary to recover the password by abusing timing or cache-based side-channel leaks. Our side-channel attacks target the protocol’s password encoding method. For instance, our cache-based attack exploits SAE’s hash-to-curve algorithm. The resulting attacks are efficient and low cost: brute-forcing all 8-character lowercase password requires less than 125$in Amazon EC2 instances. In light of ongoing standardization efforts on hash-to-curve, Password-Authenticated Key Exchanges (PAKEs), and Dragonfly as a TLS handshake, our findings are also of more general interest. Finally, we discuss how to mitigate our attacks in a backwards-compatible manner, and explain how minor changes to the protocol could have prevented most of our attack

Powered by WPeMatico

NSA-Inspired Vulnerability Found in Huawei Laptops

This is an interesting story of a serious vulnerability in a Huawei driver that Microsoft found. The vulnerability is similar in style to the NSA’s DOUBLEPULSAR that was leaked by the Shadow Brokers — believed to be the Russian government — and it’s obvious that this attack copied that technique.

What is less clear is whether the vulnerability — which has been fixed — was put into the Huwei driver accidentally or on purpose.

Powered by WPeMatico