SSL and internet security news

sidechannelattacks

Auto Added by WPeMatico

Recovering Smartphone Typing from Microphone Sounds

Yet another side-channel attack on smartphones: “Hearing your touch: A new acoustic side channel on smartphones,” by Ilia Shumailov, Laurent Simon, Jeff Yan, and Ross Anderson.

Abstract: We present the first acoustic side-channel attack that recovers what users type on the virtual keyboard of their touch-screen smartphone or tablet. When a user taps the screen with a finger, the tap generates a sound wave that propagates on the screen surface and in the air. We found the device’s microphone(s) can recover this wave and “hear” the finger’s touch, and the wave’s distortions are characteristic of the tap’s location on the screen. Hence, by recording audio through the built-in microphone(s), a malicious app can infer text as the user enters it on their device. We evaluate the effectiveness of the attack with 45 participants in a real-world environment on an Android tablet and an Android smartphone. For the tablet, we recover 61% of 200 4-digit PIN-codes within 20 attempts, even if the model is not trained with the victim’s data. For the smartphone, we recover 9 words of size 7-13 letters with 50 attempts in a common side-channel attack benchmark. Our results suggest that it not always sufficient to rely on isolation mechanisms such as TrustZone to protect user input. We propose and discuss hardware, operating-system and application-level mechanisms to block this attack more effectively. Mobile devices may need a richer capability model, a more user-friendly notification system for sensor usage and a more thorough evaluation of the information leaked by the underlying hardware.

Blog post.

Powered by WPeMatico

Using a Smartphone’s Microphone and Speakers to Eavesdrop on Passwords

It’s amazing that this is even possible: “SonarSnoop: Active Acoustic Side-Channel Attacks“:

Abstract: We report the first active acoustic side-channel attack. Speakers are used to emit human inaudible acoustic signals and the echo is recorded via microphones, turning the acoustic system of a smart phone into a sonar system. The echo signal can be used to profile user interaction with the device. For example, a victim’s finger movements can be inferred to steal Android phone unlock patterns. In our empirical study, the number of candidate unlock patterns that an attacker must try to authenticate herself to a Samsung S4 Android phone can be reduced by up to 70% using this novel acoustic side-channel. Our approach can be easily applied to other application scenarios and device types. Overall, our work highlights a new family of security threats.

News article.

Powered by WPeMatico

Speculation Attack Against Intel’s SGX

Another speculative-execution attack against Intel’s SGX.

At a high level, SGX is a new feature in modern Intel CPUs which allows computers to protect users’ data even if the entire system falls under the attacker’s control. While it was previously believed that SGX is resilient to speculative execution attacks (such as Meltdown and Spectre), Foreshadow demonstrates how speculative execution can be exploited for reading the contents of SGX-protected memory as well as extracting the machine’s private attestation key. Making things worse, due to SGX’s privacy features, an attestation report cannot be linked to the identity of its signer. Thus, it only takes a single compromised SGX machine to erode trust in the entire SGX ecosystem.

News article.

The details of the Foreshadow attack are a little more complicated than those of Meltdown. In Meltdown, the attempt to perform an illegal read of kernel memory triggers the page fault mechanism (by which the processor and operating system cooperate to determine which bit of physical memory a memory access corresponds to, or they crash the program if there’s no such mapping). Attempts to read SGX data from outside an enclave receive special handling by the processor: reads always return a specific value (-1), and writes are ignored completely. The special handling is called “abort page semantics” and should be enough to prevent speculative reads from being able to learn anything.

However, the Foreshadow researchers found a way to bypass the abort page semantics. The data structures used to control the mapping of virtual-memory addresses to physical addresses include a flag to say whether a piece of memory is present (loaded into RAM somewhere) or not. If memory is marked as not being present at all, the processor stops performing any further permissions checks and immediately triggers the page fault mechanism: this means that the abort page mechanics aren’t used. It turns out that applications can mark memory, including enclave memory, as not being present by removing all permissions (read, write, execute) from that memory.

EDITED TO ADD: Intel has responded:

L1 Terminal Fault is addressed by microcode updates released earlier this year, coupled with corresponding updates to operating system and hypervisor software that are available starting today. We’ve provided more information on our web site and continue to encourage everyone to keep their systems up-to-date, as it’s one of the best ways to stay protected.

I think this is a comprehensive link to everything the company is saying about the vulnerability.

Powered by WPeMatico

Recovering Keyboard Inputs through Thermal Imaging

Researchers at the University of California, Irvine, are able to recover user passwords by way of thermal imaging. The tech is pretty straightforward, but it’s interesting to think about the types of scenarios in which it might be pulled off.

Abstract: As a warm-blooded mammalian species, we humans routinely leave thermal residues on various objects with which we come in contact. This includes common input devices, such as keyboards, that are used for entering (among other things) secret information, such as passwords and PINs. Although thermal residue dissipates over time, there is always a certain time window during which thermal energy readings can be harvested from input devices to recover recently entered, and potentially sensitive, information.

To-date, there has been no systematic investigation of thermal profiles of keyboards, and thus no efforts have been made to secure them. This serves as our main motivation for constructing a means for password harvesting from keyboard thermal emanations. Specifically, we introduce Thermanator, a new post factum insider attack based on heat transfer caused by a user typing a password on a typical external keyboard. We conduct and describe a user study that collected thermal residues from 30 users entering 10 unique passwords (both weak and strong) on 4 popular commodity keyboards. Results show that entire sets of key-presses can be recovered by non-expert users as late as 30 seconds after initial password entry, while partial sets can be recovered as late as 1 minute after entry. Furthermore, we find that Hunt-and-Peck typists are particularly vulnerable. We also discuss some Thermanator mitigation strategies.

The main take-away of this work is three-fold: (1) using external keyboards to enter (already much-maligned) passwords is even less secure than previously recognized, (2) post factum (planned or impromptu) thermal imaging attacks are realistic, and finally (3) perhaps it is time to either stop using keyboards for password entry, or abandon passwords altogether.

News article.

Powered by WPeMatico

Another Spectre-Like CPU Vulnerability

Google and Microsoft researchers have disclosed another Spectre-like CPU side-channel vulnerability, called “Speculative Store Bypass.” Like the others, the fix will slow the CPU down.

The German tech site Heise reports that more are coming.

I’m not surprised. Writing about Spectre and Meltdown in January, I predicted that we’ll be seeing a lot more of these sorts of vulnerabilities.

Spectre and Meltdown are pretty catastrophic vulnerabilities, but they only affect the confidentiality of data. Now that they — and the research into the Intel ME vulnerability — have shown researchers where to look, more is coming — and what they’ll find will be worse than either Spectre or Meltdown.

I still predict that we’ll be seeing lots more of these in the coming months and years, as we learn more about this class of vulnerabilities.

Powered by WPeMatico

Another Branch Prediction Attack

When Spectre and Meltdown were first announced earlier this year, pretty much everyone predicted that there would be many more attacks targeting branch prediction in microprocessors. Here’s another one:

In the new attack, an attacker primes the PHT and running branch instructions so that the PHT will always assume a particular branch is taken or not taken. The victim code then runs and makes a branch, which is potentially disturbing the PHT. The attacker then runs more branch instructions of its own to detect that disturbance to the PHT; the attacker knows that some branches should be predicted in a particular direction and tests to see if the victim’s code has changed that prediction.

The researchers looked only at Intel processors, using the attacks to leak information protected using Intel’s SGX (Software Guard Extensions), a feature found on certain chips to carve out small sections of encrypted code and data such that even the operating system (or virtualization software) cannot access it. They also described ways the attack could be used against address space layout randomization and to infer data in encryption and image libraries.

Research paper.

Powered by WPeMatico

Jumping Air Gaps

Nice profile of Mordechai Guri, who researches a variety of clever ways to steal data over air-gapped computers.

Guri and his fellow Ben-Gurion researchers have shown, for instance, that it’s possible to trick a fully offline computer into leaking data to another nearby device via the noise its internal fan generates, by changing air temperatures in patterns that the receiving computer can detect with thermal sensors, or even by blinking out a stream of information from a computer hard drive LED to the camera on a quadcopter drone hovering outside a nearby window. In new research published today, the Ben-Gurion team has even shown that they can pull data off a computer protected by not only an air gap, but also a Faraday cage designed to block all radio signals.

Here’s a page with all the research results.

BoingBoing post.

Powered by WPeMatico