SSL and internet security news

iphone

Auto Added by WPeMatico

New Unpatchable iPhone Exploit Allows Jailbreaking

A new iOS exploit allows jailbreaking of pretty much all version of the iPhone. This is a huge deal for Apple, but at least it doesn’t allow someone to remotely hack people’s phones.

Some details:

I wanted to learn how Checkm8 will shape the iPhone experience­ — particularly as it relates to security­ — so I spoke at length with axi0mX on Friday. Thomas Reed, director of Mac offerings at security firm Malwarebytes, joined me. The takeaways from the long-ranging interview are:

  • Checkm8 requires physical access to the phone. It can’t be remotely executed, even if combined with other exploits.

  • The exploit allows only tethered jailbreaks, meaning it lacks persistence. The exploit must be run each time an iDevice boots.

  • Checkm8 doesn’t bypass the protections offered by the Secure Enclave and Touch ID.

  • All of the above means people will be able to use Checkm8 to install malware only under very limited circumstances. The above also means that Checkm8 is unlikely to make it easier for people who find, steal or confiscate a vulnerable iPhone, but don’t have the unlock PIN, to access the data stored on it.

  • Checkm8 is going to benefit researchers, hobbyists, and hackers by providing a way not seen in almost a decade to access the lowest levels of iDevices.

Also:

“The main people who are likely to benefit from this are security researchers, who are using their own phone in controlled conditions. This process allows them to gain more control over the phone and so improves visibility into research on iOS or other apps on the phone,” Wood says. “For normal users, this is unlikely to have any effect, there are too many extra hurdles currently in place that they would have to get over to do anything significant.”

If a regular person with no prior knowledge of jailbreaking wanted to use this exploit to jailbreak their iPhone, they would find it extremely difficult, simply because Checkm8 just gives you access to the exploit, but not a jailbreak in itself. It’s also a ‘tethered exploit’, meaning that the jailbreak can only be triggered when connected to a computer via USB and will become untethered once the device restarts.

Powered by WPeMatico

Massive iPhone Hack Targets Uyghurs

China is being blamed for a massive surveillance operation that targeted Uyghur Muslims. This story broke in waves, the first wave being about the iPhone.

Earlier this year, Google’s Project Zero found a series of websites that have been using zero-day vulnerabilities to indiscriminately install malware on iPhones that would visit the site. (The vulnerabilities were patched in iOS 12.1.4, released on February 7.)

Earlier this year Google’s Threat Analysis Group (TAG) discovered a small collection of hacked websites. The hacked sites were being used in indiscriminate watering hole attacks against their visitors, using iPhone 0-day.

There was no target discrimination; simply visiting the hacked site was enough for the exploit server to attack your device, and if it was successful, install a monitoring implant. We estimate that these sites receive thousands of visitors per week.

TAG was able to collect five separate, complete and unique iPhone exploit chains, covering almost every version from iOS 10 through to the latest version of iOS 12. This indicated a group making a sustained effort to hack the users of iPhones in certain communities over a period of at least two years.

Four more news stories.

This upends pretty much everything we know about iPhone hacking. We believed that it was hard. We believed that effective zero-day exploits cost $2M or $3M, and were used sparingly by governments only against high-value targets. We believed that if an exploit was used too frequently, it would be quickly discovered and patched.

None of that is true here. This operation used fourteen zero-days exploits. It used them indiscriminately. And it remained undetected for two years. (I waited before posting this because I wanted to see if someone would rebut this story, or explain it somehow.)

Google’s announcement left out of details, like the URLs of the sites delivering the malware. That omission meant that we had no idea who was behind the attack, although the speculation was that it was a nation-state.

Subsequent reporting added that malware against Android phones and the Windows operating system were also delivered by those websites. And then that the websites were targeted at Uyghurs. Which leads us all to blame China.

So now this is a story of a large, expensive, indiscriminate, Chinese-run surveillance operation against an ethnic minority in their country. And the politics will overshadow the tech. But the tech is still really impressive.

EDITED TO ADD: New data on the value of smartphone exploits:

According to the company, starting today, a zero-click (no user interaction) exploit chain for Android can get hackers and security researchers up to $2.5 million in rewards. A similar exploit chain impacting iOS is worth only $2 million.

Powered by WPeMatico

iPhone Apps Surreptitiously Communicated with Unknown Servers

Long news article (alternate source) on iPhone privacy, specifically the enormous amount of data your apps are collecting without your knowledge. A lot of this happens in the middle of the night, when you’re probably not otherwise using your phone:

IPhone apps I discovered tracking me by passing information to third parties ­ just while I was asleep ­ include Microsoft OneDrive, Intuit’s Mint, Nike, Spotify, The Washington Post and IBM’s the Weather Channel. One app, the crime-alert service Citizen, shared personally identifiable information in violation of its published privacy policy.

And your iPhone doesn’t only feed data trackers while you sleep. In a single week, I encountered over 5,400 trackers, mostly in apps, not including the incessant Yelp traffic.

Powered by WPeMatico

How Apple’s “Find My” Feature Works

Matthew Green intelligently speculates about how Apple’s new “Find My” feature works.

If you haven’t already been inspired by the description above, let me phrase the question you ought to be asking: how is this system going to avoid being a massive privacy nightmare?

Let me count the concerns:

  • If your device is constantly emitting a BLE signal that uniquely identifies it, the whole world is going to have (yet another) way to track you. Marketers already use WiFi and Bluetooth MAC addresses to do this: Find My could create yet another tracking channel.

  • It also exposes the phones who are doing the tracking. These people are now going to be sending their current location to Apple (which they may or may not already be doing). Now they’ll also be potentially sharing this information with strangers who “lose” their devices. That could go badly.

  • Scammers might also run active attacks in which they fake the location of your device. While this seems unlikely, people will always surprise you.

The good news is that Apple claims that their system actually does provide strong privacy, and that it accomplishes this using clever cryptography. But as is typical, they’ve declined to give out the details how they’re going to do it. Andy Greenberg talked me through an incomplete technical description that Apple provided to Wired, so that provides many hints. Unfortunately, what Apple provided still leaves huge gaps. It’s into those gaps that I’m going to fill in my best guess for what Apple is actually doing.

Powered by WPeMatico

iOS Shortcut for Recording the Police

Hey Siri; I’m getting pulled over” can be a shortcut:

Once the shortcut is installed and configured, you just have to say, for example, “Hey Siri, I’m getting pulled over.” Then the program pauses music you may be playing, turns down the brightness on the iPhone, and turns on “do not disturb” mode.

It also sends a quick text to a predetermined contact to tell them you’ve been pulled over, and it starts recording using the iPhone’s front-facing camera. Once you’ve stopped recording, it can text or email the video to a different predetermined contact and save it to Dropbox.

Powered by WPeMatico

Fingerprinting iPhones

This clever attack allows someone to uniquely identify a phone when you visit a website, based on data from the accelerometer, gyroscope, and magnetometer sensors.

We have developed a new type of fingerprinting attack, the calibration fingerprinting attack. Our attack uses data gathered from the accelerometer, gyroscope and magnetometer sensors found in smartphones to construct a globally unique fingerprint. Overall, our attack has the following advantages:

  • The attack can be launched by any website you visit or any app you use on a vulnerable device without requiring any explicit confirmation or consent from you.
  • The attack takes less than one second to generate a fingerprint.
  • The attack can generate a globally unique fingerprint for iOS devices.
  • The calibration fingerprint never changes, even after a factory reset.
  • The attack provides an effective means to track you as you browse across the web and move between apps on your phone.

* Following our disclosure, Apple has patched this vulnerability in iOS 12.2.

Research paper.

Powered by WPeMatico

iPhone FaceTime Vulnerability

This is kind of a crazy iPhone vulnerability: it’s possible to call someone on FaceTime and listen on their microphone — and see from their camera — before they accept the call.

This is definitely an embarrassment, and Apple was right to disable Group FaceTime until it’s fixed. But it’s hard to imagine how an adversary can operationalize this in any useful way.

New York governor Andrew M. Cuomo wrote: “The FaceTime bug is an egregious breach of privacy that puts New Yorkers at risk.” Kinda, I guess.

Powered by WPeMatico

iOS 12.1 Vulnerability

This is really just to point out that computer security is really hard:

Almost as soon as Apple released iOS 12.1 on Tuesday, a Spanish security researcher discovered a bug that exploits group Facetime calls to give anyone access to an iPhone users’ contact information with no need for a passcode.

[…]

A bad actor would need physical access to the phone that they are targeting and has a few options for viewing the victim’s contact information. They would need to either call the phone from another iPhone or have the phone call itself. Once the call connects they would need to:

  • Select the Facetime icon
  • Select “Add Person”
  • Select the plus icon
  • Scroll through the contacts and use 3D touch on a name to view all contact information that’s stored.

Making the phone call itself without entering a passcode can be accomplished by either telling Siri the phone number or, if they don’t know the number, they can say “call my phone.” We tested this with both the owners’ voice and a strangers voice, in both cases, Siri initiated the call.

Powered by WPeMatico

Cell Phone Security and Heads of State

Earlier this week, the New York Times reported that the Russians and the Chinese were eavesdropping on President Donald Trump’s personal cell phone and using the information gleaned to better influence his behavior. This should surprise no one. Security experts have been talking about the potential security vulnerabilities in Trump’s cell phone use since he became president. And President Barack Obama bristled at — but acquiesced to — the security rules prohibiting him from using a “regular” cell phone throughout his presidency.

Three broader questions obviously emerge from the story. Who else is listening in on Trump’s cell phone calls? What about the cell phones of other world leaders and senior government officials? And — most personal of all — what about my cell phone calls?

There are two basic places to eavesdrop on pretty much any communications system: at the end points and during transmission. This means that a cell phone attacker can either compromise one of the two phones or eavesdrop on the cellular network. Both approaches have their benefits and drawbacks. The NSA seems to prefer bulk eavesdropping on the planet’s major communications links and then picking out individuals of interest. In 2016, WikiLeaks published a series of classified documents listing “target selectors”: phone numbers the NSA searches for and records. These included senior government officials of Germany — among them Chancellor Angela Merkel — France, Japan, and other countries.

Other countries don’t have the same worldwide reach that the NSA has, and must use other methods to intercept cell phone calls. We don’t know details of which countries do what, but we know a lot about the vulnerabilities. Insecurities in the phone network itself are so easily exploited that 60 Minutes eavesdropped on a US congressman’s phone live on camera in 2016. Back in 2005, unknown attackers targeted the cell phones of many Greek politicians by hacking the country’s phone network and turning on an already-installed eavesdropping capability. The NSA even implanted eavesdropping capabilities in networking equipment destined for the Syrian Telephone Company.

Alternatively, an attacker could intercept the radio signals between a cell phone and a tower. Encryption ranges from very weak to possibly strong, depending on which flavor the system uses. Don’t think the attacker has to put his eavesdropping antenna on the White House lawn; the Russian Embassy is close enough.

The other way to eavesdrop on a cell phone is by hacking the phone itself. This is the technique favored by countries with less sophisticated intelligence capabilities. In 2017, the public-interest forensics group Citizen Lab uncovered an extensive eavesdropping campaign against Mexican lawyers, journalists, and opposition politicians — presumably run by the government. Just last month, the same group found eavesdropping capabilities in products from the Israeli cyberweapons manufacturer NSO Group operating in Algeria, Bangladesh, Greece, India, Kazakhstan, Latvia, South Africa — 45 countries in all.

These attacks generally involve downloading malware onto a smartphone that then records calls, text messages, and other user activities, and forwards them to some central controller. Here, it matters which phone is being targeted. iPhones are harder to hack, which is reflected in the prices companies pay for new exploit capabilities. In 2016, the vulnerability broker Zerodium offered $1.5 million for an unknown iOS exploit and only $200K for a similar Android exploit. Earlier this year, a new Dubai start-up announced even higher prices. These vulnerabilities are resold to governments and cyberweapons manufacturers.

Some of the price difference is due to the ways the two operating systems are designed and used. Apple has much more control over the software on an iPhone than Google does on an Android phone. Also, Android phones are generally designed, built, and sold by third parties, which means they are much less likely to get timely security updates. This is changing. Google now has its own phone — Pixel — that gets security updates quickly and regularly, and Google is now trying to pressure Android-phone manufacturers to update their phones more regularly. (President Trump reportedly uses an iPhone.)

Another way to hack a cell phone is to install a backdoor during the design process. This is a real fear; earlier this year, US intelligence officials warned that phones made by the Chinese companies ZTE and Huawei might be compromised by that government, and the Pentagon ordered stores on military bases to stop selling them. This is why China’s recommendation that if Trump wanted security, he should use a Huawei phone, was an amusing bit of trolling.

Given the wealth of insecurities and the array of eavesdropping techniques, it’s safe to say that lots of countries are spying on the phones of both foreign officials and their own citizens. Many of these techniques are within the capabilities of criminal groups, terrorist organizations, and hackers. If I were guessing, I’d say that the major international powers like China and Russia are using the more passive interception techniques to spy on Trump, and that the smaller countries are too scared of getting caught to try to plant malware on his phone.

It’s safe to say that President Trump is not the only one being targeted; so are members of Congress, judges, and other senior officials — especially because no one is trying to tell any of them to stop using their cell phones (although cell phones still are not allowed on either the House or the Senate floor).

As for the rest of us, it depends on how interesting we are. It’s easy to imagine a criminal group eavesdropping on a CEO’s phone to gain an advantage in the stock market, or a country doing the same thing for an advantage in a trade negotiation. We’ve seen governments use these tools against dissidents, reporters, and other political enemies. The Chinese and Russian governments are already targeting the US power grid; it makes sense for them to target the phones of those in charge of that grid.

Unfortunately, there’s not much you can do to improve the security of your cell phone. Unlike computer networks, for which you can buy antivirus software, network firewalls, and the like, your phone is largely controlled by others. You’re at the mercy of the company that makes your phone, the company that provides your cellular service, and the communications protocols developed when none of this was a problem. If one of those companies doesn’t want to bother with security, you’re vulnerable.

This is why the current debate about phone privacy, with the FBI on one side wanting the ability to eavesdrop on communications and unlock devices, and users on the other side wanting secure devices, is so important. Yes, there are security benefits to the FBI being able to use this information to help solve crimes, but there are far greater benefits to the phones and networks being so secure that all the potential eavesdroppers — including the FBI — can’t access them. We can give law enforcement other forensics tools, but we must keep foreign governments, criminal groups, terrorists, and everyone else out of everyone’s phones. The president may be taking heat for his love of his insecure phone, but each of us is using just as insecure a phone. And for a surprising number of us, making those phones more private is a matter of national security.

This essay previously appeared in the Atlantic.

EDITED TO ADD: Steven Bellovin and Susan Landau have a good essay on the same topic, as does Wired. Slashdot post.

Powered by WPeMatico