SSL and internet security news

Security technology

Auto Added by WPeMatico

IoT Security Principles

The BSA — also known as the Software Alliance, formerly the Business Software Alliance (which explains the acronym) — is an industry lobbying group. They just published “Policy Principles for Building a Secure and Trustworthy Internet of Things.”

They call for:

  • Distinguishing between consumer and industrial IoT.
  • Offering incentives for integrating security.
  • Harmonizing national and international policies.
  • Establishing regularly updated baseline security requirements

As with pretty much everything else, you can assume that if an industry lobbying group is in favor of it, then it doesn’t go far enough.

And if you need more security and privacy principles for the IoT, here’s a list of over twenty.

Powered by WPeMatico

ThiefQuest Ransomware for the Mac

There’s a new ransomware for the Mac called ThiefQuest or EvilQuest. It’s hard to get infected:

For your Mac to become infected, you would need to torrent a compromised installer and then dismiss a series of warnings from Apple in order to run it. It’s a good reminder to get your software from trustworthy sources, like developers whose code is “signed” by Apple to prove its legitimacy, or from Apple’s App Store itself. But if you’re someone who already torrents programs and is used to ignoring Apple’s flags, ThiefQuest illustrates the risks of that approach.

But it’s nasty:

In addition to ransomware, ThiefQuest has a whole other set of spyware capabilities that allow it to exfiltrate files from an infected computer, search the system for passwords and cryptocurrency wallet data, and run a robust keylogger to grab passwords, credit card numbers, or other financial information as a user types it in. The spyware component also lurks persistently as a backdoor on infected devices, meaning it sticks around even after a computer reboots, and could be used as a launchpad for additional, or “second stage,” attacks. Given that ransomware is so rare on Macs to begin with, this one-two punch is especially noteworthy.

Powered by WPeMatico

Hacked by Police

French police hacked EncroChat secure phones, which are widely used by criminals:

Encrochat’s phones are essentially modified Android devices, with some models using the “BQ Aquaris X2,” an Android handset released in 2018 by a Spanish electronics company, according to the leaked documents. Encrochat took the base unit, installed its own encrypted messaging programs which route messages through the firm’s own servers, and even physically removed the GPS, camera, and microphone functionality from the phone. Encrochat’s phones also had a feature that would quickly wipe the device if the user entered a PIN, and ran two operating systems side-by-side. If a user wanted the device to appear innocuous, they booted into normal Android. If they wanted to return to their sensitive chats, they switched over to the Encrochat system. The company sold the phones on a subscription based model, costing thousands of dollars a year per device.

This allowed them and others to investigate and arrest many:

Unbeknownst to Mark, or the tens of thousands of other alleged Encrochat users, their messages weren’t really secure. French authorities had penetrated the Encrochat network, leveraged that access to install a technical tool in what appears to be a mass hacking operation, and had been quietly reading the users’ communications for months. Investigators then shared those messages with agencies around Europe.

Only now is the astonishing scale of the operation coming into focus: It represents one of the largest law enforcement infiltrations of a communications network predominantly used by criminals ever, with Encrochat users spreading beyond Europe to the Middle East and elsewhere. French, Dutch, and other European agencies monitored and investigated “more than a hundred million encrypted messages” sent between Encrochat users in real time, leading to arrests in the UK, Norway, Sweden, France, and the Netherlands, a team of international law enforcement agencies announced Thursday.

EncroChat learned about the hack, but didn’t know who was behind it.

Going into full-on emergency mode, Encrochat sent a message to its users informing them of the ongoing attack. The company also informed its SIM provider, Dutch telecommunications firm KPN, which then blocked connections to the malicious servers, the associate claimed. Encrochat cut its own SIM service; it had an update scheduled to push to the phones, but it couldn’t guarantee whether that update itself wouldn’t be carrying malware too. That, and maybe KPN was working with the authorities, Encrochat’s statement suggested (KPN declined to comment). Shortly after Encrochat restored SIM service, KPN removed the firewall, allowing the hackers’ servers to communicate with the phones once again. Encrochat was trapped.

Encrochat decided to shut itself down entirely.

Lots of details about the hack in the article. Well worth reading in full.

The UK National Crime Agency called it Operation Venetic: “46 arrests, and £54m criminal cash, 77 firearms and over two tonnes of drugs seized so far.”

Many more news articles. EncroChat website. Slashdot thread. Hacker News threads.

Powered by WPeMatico

The Security Value of Inefficiency

For decades, we have prized efficiency in our economy. We strive for it. We reward it. In normal times, that’s a good thing. Running just at the margins is efficient. A single just-in-time global supply chain is efficient. Consolidation is efficient. And that’s all profitable. Inefficiency, on the other hand, is waste. Extra inventory is inefficient. Overcapacity is inefficient. Using many small suppliers is inefficient. Inefficiency is unprofitable.

But inefficiency is essential security, as the COVID-19 pandemic is teaching us. All of the overcapacity that has been squeezed out of our healthcare system; we now wish we had it. All of the redundancy in our food production that has been consolidated away; we want that, too. We need our old, local supply chains — not the single global ones that are so fragile in this crisis. And we want our local restaurants and businesses to survive, not just the national chains.

We have lost much inefficiency to the market in the past few decades. Investors have become very good at noticing any fat in every system and swooping down to monetize those redundant assets. The winner-take-all mentality that has permeated so many industries squeezes any inefficiencies out of the system.

This drive for efficiency leads to brittle systems that function properly when everything is normal but break under stress. And when they break, everyone suffers. The less fortunate suffer and die. The more fortunate are merely hurt, and perhaps lose their freedoms or their future. But even the extremely fortunate suffer — maybe not in the short term, but in the long term from the constriction of the rest of society.

Efficient systems have limited ability to deal with system-wide economic shocks. Those shocks are coming with increased frequency. They’re caused by global pandemics, yes, but also by climate change, by financial crises, by political crises. If we want to be secure against these crises and more, we need to add inefficiency back into our systems.

I don’t simply mean that we need to make our food production, or healthcare system, or supply chains sloppy and wasteful. We need a certain kind of inefficiency, and it depends on the system in question. Sometimes we need redundancy. Sometimes we need diversity. Sometimes we need overcapacity.

The market isn’t going to supply any of these things, least of all in a strategic capacity that will result in resilience. What’s necessary to make any of this work is regulation.

First, we need to enforce antitrust laws. Our meat supply chain is brittle because there are limited numbers of massive meatpacking plants — now disease factories — rather than lots of smaller slaughterhouses. Our retail supply chain is brittle because a few national companies and websites dominate. We need multiple companies offering alternatives to a single product or service. We need more competition, more niche players. We need more local companies, more domestic corporate players, and diversity in our international suppliers. Competition provides all of that, while monopolies suck that out of the system.

The second thing we need is specific regulations that require certain inefficiencies. This isn’t anything new. Every safety system we have is, to some extent, an inefficiency. This is true for fire escapes on buildings, lifeboats on cruise ships, and multiple ways to deploy the landing gear on aircraft. Not having any of those things would make the underlying systems more efficient, but also less safe. It’s also true for the internet itself, originally designed with extensive redundancy as a Cold War security measure.

With those two things in place, the market can work its magic to provide for these strategic inefficiencies as cheaply and as effectively as possible. As long as there are competitors who are vying with each other, and there aren’t competitors who can reduce the inefficiencies and undercut the competition, these inefficiencies just become part of the price of whatever we’re buying.

The government is the entity that steps in and enforces a level playing field instead of a race to the bottom. Smart regulation addresses the long-term need for security, and ensures it’s not continuously sacrificed to short-term considerations.

We have largely been content to ignore the long term and let Wall Street run our economy as efficiently as it can. That’s no longer sustainable. We need inefficiency — the right kind in the right way — to ensure our security. No, it’s not free. But it’s worth the cost.

This essay previously appeared in Quartz.

Powered by WPeMatico

Securing the International IoT Supply Chain

Together with Nate Kim (former student) and Trey Herr (Atlantic Council Cyber Statecraft Initiative), I have written a paper on IoT supply chain security. The basic problem we try to solve is: how to you enforce IoT security regulations when most of the stuff is made in other countries? And our solution is: enforce the regulations on the domestic company that’s selling the stuff to consumers. There’s a lot of detail between here and there, though, and it’s all in the paper.

We also wrote a Lawfare post:

…we propose to leverage these supply chains as part of the solution. Selling to U.S. consumers generally requires that IoT manufacturers sell through a U.S. subsidiary or, more commonly, a domestic distributor like Best Buy or Amazon. The Federal Trade Commission can apply regulatory pressure to this distributor to sell only products that meet the requirements of a security framework developed by U.S. cybersecurity agencies. That would put pressure on manufacturers to make sure their products are compliant with the standards set out in this security framework, including pressuring their component vendors and original device manufacturers to make sure they supply parts that meet the recognized security framework.

News article.

Powered by WPeMatico

Android Apps Stealing Facebook Credentials

Google has removed 25 Android apps from its store because they steal Facebook credentials:

Before being taken down, the 25 apps were collectively downloaded more than 2.34 million times.

The malicious apps were developed by the same threat group and despite offering different features, under the hood, all the apps worked the same.

According to a report from French cyber-security firm Evina shared with ZDNet today, the apps posed as step counters, image editors, video editors, wallpaper apps, flashlight applications, file managers, and mobile games.

The apps offered a legitimate functionality, but they also contained malicious code. Evina researchers say the apps contained code that detected what app a user recently opened and had in the phone’s foreground.

Powered by WPeMatico

iPhone Apps Stealing Clipboard Data

iOS apps are repeatedly reading clipboard data, which can include all sorts of sensitive information.

While Haj Bakry and Mysk published their research in March, the invasive apps made headlines again this week with the developer beta release of iOS 14. A novel feature Apple added provides a banner warning every time an app reads clipboard contents. As large numbers of people began testing the beta release, they quickly came to appreciate just how many apps engage in the practice and just how often they do it.

This YouTube video, which has racked up more than 87,000 views since it was posted on Tuesday, shows a small sample of the apps triggering the new warning.

Powered by WPeMatico

The Unintended Harms of Cybersecurity

Interesting research: “Identifying Unintended Harms of Cybersecurity Countermeasures“:

Abstract: Well-meaning cybersecurity risk owners will deploy countermeasures (technologies or procedures) to manage risks to their services or systems. In some cases, those countermeasures will produce unintended consequences, which must then be addressed. Unintended consequences can potentially induce harm, adversely affecting user behaviour, user inclusion, or the infrastructure itself (including other services or countermeasures). Here we propose a framework for preemptively identifying unintended harms of risk countermeasures in cybersecurity.The framework identifies a series of unintended harms which go beyond technology alone, to consider the cyberphysical and sociotechnical space: displacement, insecure norms, additional costs, misuse, misclassification, amplification, and disruption. We demonstrate our framework through application to the complex,multi-stakeholder challenges associated with the prevention of cyberbullying as an applied example. Our framework aims to illuminate harmful consequences, not to paralyze decision-making, but so that potential unintended harms can be more thoroughly considered in risk management strategies. The framework can support identification and preemptive planning to identify vulnerable populations and preemptively insulate them from harm. There are opportunities to use the framework in coordinating risk management strategy across stakeholders in complex cyberphysical environments.

Security is always a trade-off. I appreciate work that examines the details of that trade-off.

Powered by WPeMatico