SSL and internet security news

crime

Auto Added by WPeMatico

Backdoor Built into Android Firmware

In 2017, some Android phones came with a backdoor pre-installed:

Criminals in 2017 managed to get an advanced backdoor preinstalled on Android devices before they left the factories of manufacturers, Google researchers confirmed on Thursday.

Triada first came to light in 2016 in articles published by Kaspersky here and here, the first of which said the malware was “one of the most advanced mobile Trojans” the security firm’s analysts had ever encountered. Once installed, Triada’s chief purpose was to install apps that could be used to send spam and display ads. It employed an impressive kit of tools, including rooting exploits that bypassed security protections built into Android and the means to modify the Android OS’ all-powerful Zygote process. That meant the malware could directly tamper with every installed app. Triada also connected to no fewer than 17 command and control servers.

In July 2017, security firm Dr. Web reported that its researchers had found Triada built into the firmware of several Android devices, including the Leagoo M5 Plus, Leagoo M8, Nomu S10, and Nomu S20. The attackers used the backdoor to surreptitiously download and install modules. Because the backdoor was embedded into one of the OS libraries and located in the system section, it couldn’t be deleted using standard methods, the report said.

On Thursday, Google confirmed the Dr. Web report, although it stopped short of naming the manufacturers. Thursday’s report also said the supply chain attack was pulled off by one or more partners the manufacturers used in preparing the final firmware image used in the affected devices.

This is a supply chain attack. It seems to be the work of criminals, but it could just as easily have been a nation-state.

Powered by WPeMatico

Evaluating the GCHQ Exceptional Access Proposal

The so-called Crypto Wars have been going on for 25 years now. Basically, the FBI — and some of their peer agencies in the UK, Australia, and elsewhere — argue that the pervasive use of civilian encryption is hampering their ability to solve crimes and that they need the tech companies to make their systems susceptible to government eavesdropping. Sometimes their complaint is about communications systems, like voice or messaging apps. Sometimes it’s about end-user devices. On the other side of this debate is pretty much all technologists working in computer security and cryptography, who argue that adding eavesdropping features fundamentally makes those systems less secure.

A recent entry in this debate is a proposal by Ian Levy and Crispin Robinson, both from the UK’s GCHQ (the British signals-intelligence agency — basically, its NSA). It’s actually a positive contribution to the discourse around backdoors; most of the time government officials broadly demand that the tech companies figure out a way to meet their requirements, without providing any details. Levy and Robinson write:

In a world of encrypted services, a potential solution could be to go back a few decades. It’s relatively easy for a service provider to silently add a law enforcement participant to a group chat or call. The service provider usually controls the identity system and so really decides who’s who and which devices are involved — they’re usually involved in introducing the parties to a chat or call. You end up with everything still being end-to-end encrypted, but there’s an extra ‘end’ on this particular communication. This sort of solution seems to be no more intrusive than the virtual crocodile clips that our democratically elected representatives and judiciary authorise today in traditional voice intercept solutions and certainly doesn’t give any government power they shouldn’t have.

On the surface, this isn’t a big ask. It doesn’t affect the encryption that protects the communications. It only affects the authentication that assures people of whom they are talking to. But it’s no less dangerous a backdoor than any others that have been proposed: It exploits a security vulnerability rather than fixing it, and it opens all users of the system to exploitation of that same vulnerability by others.

In a blog post, cryptographer Matthew Green summarized the technical problems with this GCHQ proposal. Basically, making this backdoor work requires not only changing the cloud computers that oversee communications, but it also means changing the client program on everyone’s phone and computer. And that change makes all of those systems less secure. Levy and Robinson make a big deal of the fact that their backdoor would only be targeted against specific individuals and their communications, but it’s still a general backdoor that could be used against anybody.

The basic problem is that a backdoor is a technical capability — a vulnerability — that is available to anyone who knows about it and has access to it. Surrounding that vulnerability is a procedural system that tries to limit access to that capability. Computers, especially internet-connected computers, are inherently hackable, limiting the effectiveness of any procedures. The best defense is to not have the vulnerability at all.

That old physical eavesdropping system Levy and Robinson allude to also exploits a security vulnerability. Because telephone conversations were unencrypted as they passed through the physical wires of the phone system, the police were able to go to a switch in a phone company facility or a junction box on the street and manually attach alligator clips to a specific pair and listen in to what that phone transmitted and received. It was a vulnerability that anyone could exploit — not just the police — but was mitigated by the fact that the phone company was a monolithic monopoly, and physical access to the wires was either difficult (inside a phone company building) or obvious (on the street at a junction box).

The functional equivalent of physical eavesdropping for modern computer phone switches is a requirement of a 1994 U.S. law called CALEA — and similar laws in other countries. By law, telephone companies must engineer phone switches that the government can eavesdrop, mirroring that old physical system with computers. It is not the same thing, though. It doesn’t have those same physical limitations that make it more secure. It can be administered remotely. And it’s implemented by a computer, which makes it vulnerable to the same hacking that every other computer is vulnerable to.

This isn’t a theoretical problem; these systems have been subverted. The most public incident dates from 2004 in Greece. Vodafone Greece had phone switches with the eavesdropping feature mandated by CALEA. It was turned off by default in the Greek phone system, but the NSA managed to surreptitiously turn it on and use it to eavesdrop on the Greek prime minister and over 100 other high-ranking dignitaries.

There’s nothing distinct about a phone switch that makes it any different from other modern encrypted voice or chat systems; any remotely administered backdoor system will be just as vulnerable. Imagine a chat program added this GCHQ backdoor. It would have to add a feature that added additional parties to a chat from somewhere in the system — and not by the people at the endpoints. It would have to suppress any messages alerting users to another party being added to that chat. Since some chat programs, like iMessage and Signal, automatically send such messages, it would force those systems to lie to their users. Other systems would simply never implement the “tell me who is in this chat conversation” feature¬≠which amounts to the same thing.

And once that’s in place, every government will try to hack it for its own purposes¬≠ — just as the NSA hacked Vodafone Greece. Again, this is nothing new. In 2010, China successfully hacked the back-door mechanism Google put in place to meet law-enforcement requests. In 2015, someone — we don’t know who — hacked an NSA backdoor in a random-number generator used to create encryption keys, changing the parameters so they could also eavesdrop on the communications. There are certainly other stories that haven’t been made public.

Simply adding the feature erodes public trust. If you were a dissident in a totalitarian country trying to communicate securely, would you want to use a voice or messaging system that is known to have this sort of backdoor? Who would you bet on, especially when the cost of losing the bet might be imprisonment or worse: the company that runs the system, or your country’s government intelligence agency? If you were a senior government official, or the head of a large multinational corporation, or the security manager or a critical technician at a power plant, would you want to use this system?

Of course not.

Two years ago, there was a rumor of a WhatsApp backdoor. The details are complicated, and calling it a backdoor or a vulnerability is largely inaccurate — but the resultant confusion caused some people to abandon the encrypted messaging service.

Trust is fragile, and transparency is essential to trust. And while Levy and Robinson state that “any exceptional access solution should not fundamentally change the trust relationship between a service provider and its users,” this proposal does exactly that. Communications companies could no longer be honest about what their systems were doing, and we would have no reason to trust them if they tried.

In the end, all of these exceptional access mechanisms, whether they exploit existing vulnerabilities that should be closed or force vendors to open new ones, reduce the security of the underlying system. They reduce our reliance on security technologies we know how to do well — cryptography — to computer security technologies we are much less good at. Even worse, they replace technical security measures with organizational procedures. Whether it’s a database of master keys that could decrypt an iPhone or a communications switch that orchestrates who is securely chatting with whom, it is vulnerable to attack. And it will be attacked.

The foregoing discussion is a specific example of a broader discussion that we need to have, and it’s about the attack/defense balance. Which should we prioritize? Should we design our systems to be open to attack, in which case they can be exploited by law enforcement — and others? Or should we design our systems to be as secure as possible, which means they will be better protected from hackers, criminals, foreign governments and — unavoidably — law enforcement as well?

This discussion is larger than the FBI’s ability to solve crimes or the NSA’s ability to spy. We know that foreign intelligence services are targeting the communications of our elected officials, our power infrastructure, and our voting systems. Do we really want some foreign country penetrating our lawful-access backdoor in the same way the NSA penetrated Greece’s?

I have long maintained that we need to adopt a defense-dominant strategy: We should prioritize our need for security over our need for surveillance. This is especially true in the new world of physically capable computers. Yes, it will mean that law enforcement will have a harder time eavesdropping on communications and unlocking computing devices. But law enforcement has other forensic techniques to collect surveillance data in our highly networked world. We’d be much better off increasing law enforcement’s technical ability to investigate crimes in the modern digital world than we would be to weaken security for everyone. The ability to surreptitiously add ghost users to a conversation is a vulnerability, and it’s one that we would be better served by closing than exploiting.

This essay originally appeared on Lawfare.com.

Powered by WPeMatico

“Two Stage” BMW Theft Attempt

Modern cars have alarm systems that automatically connect to a remote call center. This makes cars harder to steal, since tripping the alarm causes a quick response. This article describes a theft attempt that tried to neutralize that security system. In the first attack, the thieves just disabled the alarm system and then left. If the owner had not immediately repaired the car, the thieves would have returned the next night and — no longer working under time pressure — stolen the car.

Powered by WPeMatico

On Financial Fraud

There are some good lessons in this article on financial fraud:

That’s how we got it so wrong. We were looking for incidental breaches of technical regulations, not systematic crime. And the thing is, that’s normal. The nature of fraud is that it works outside your field of vision, subverting the normal checks and balances so that the world changes while the picture stays the same. People in financial markets have been missing the wood for the trees for as long as there have been markets.

[..]

Trust — particularly between complete strangers, with no interactions beside relatively anonymous market transactions — is the basis of the modern industrial economy. And the story of the development of the modern economy is in large part the story of the invention and improvement of technologies and institutions for managing that trust.

And as industrial society develops, it becomes easier to be a victim. In The Wealth of Nations, Adam Smith described how prosperity derived from the division of labour — the 18 distinct operations that went into the manufacture of a pin, for example. While this was going on, the modern world also saw a growing division of trust. The more a society benefits from the division of labour in checking up on things, the further you can go into a con game before you realise that you’re in one.

[…]

Libor teaches us a valuable lesson about commercial fraud — that unlike other crimes, it has a problem of denial as well as one of detection. There are very few other criminal acts where the victim not only consents to the criminal act, but voluntarily transfers the money or valuable goods to the criminal. And the hierarchies, status distinctions and networks that make up a modern economy also create powerful psychological barriers against seeing fraud when it is happening. White-collar crime is partly defined by the kind of person who commits it: a person of high status in the community, the kind of person who is always given the benefit of the doubt.

[…]

Fraudsters don’t play on moral weaknesses, greed or fear; they play on weaknesses in the system of checks and balances — the audit processes that are meant to supplement an overall environment of trust. One point that comes up again and again when looking at famous and large-scale frauds is that, in many cases, everything could have been brought to a halt at a very early stage if anyone had taken care to confirm all the facts. But nobody does confirm all the facts. There are just too bloody many of them. Even after the financial rubble has settled and the arrests been made, this is a huge problem.

Powered by WPeMatico

E-Mail Leaves an Evidence Trail

If you’re going to commit an illegal act, it’s best not to discuss it in e-mail. It’s also best to Google tech instructions rather than asking someone else to do it:

One new detail from the indictment, however, points to just how unsophisticated Manafort seems to have been. Here’s the relevant passage from the indictment. I’ve bolded the most important bits:

Manafort and Gates made numerous false and fraudulent representations to secure the loans. For example, Manafort provided the bank with doctored [profit and loss statements] for [Davis Manafort Inc.] for both 2015 and 2016, overstating its income by millions of dollars. The doctored 2015 DMI P&L submitted to Lender D was the same false statement previously submitted to Lender C, which overstated DMI’s income by more than $4 million. The doctored 2016 DMI P&L was inflated by Manafort by more than $3.5 million. To create the false 2016 P&L, on or about October 21, 2016, Manafort emailed Gates a .pdf version of the real 2016 DMI P&L, which showed a loss of more than $600,000. Gates converted that .pdf into a “Word” document so that it could be edited, which Gates sent back to Manafort. Manafort altered that “Word” document by adding more than $3.5 million in income. He then sent this falsified P&L to Gates and asked that the “Word” document be converted back to a .pdf, which Gates did and returned to Manafort. Manafort then sent the falsified 2016 DMI P&L .pdf to Lender D.

So here’s the essence of what went wrong for Manafort and Gates, according to Mueller’s investigation: Manafort allegedly wanted to falsify his company’s income, but he couldn’t figure out how to edit the PDF. He therefore had Gates turn it into a Microsoft Word document for him, which led the two to bounce the documents back-and-forth over email. As attorney and blogger Susan Simpson notes on Twitter, Manafort’s inability to complete a basic task on his own seems to have effectively “created an incriminating paper trail.”

If there’s a lesson here, it’s that the Internet constantly generates data about what people are doing on it, and that data is all potential evidence. The FBI is 100% wrong that they’re going dark; it’s really the golden age of surveillance, and the FBI’s panic is really just its own lack of technical sophistication.

Powered by WPeMatico

Daphne Caruana Galizia’s Murder and the Security of WhatsApp

Daphne Caruana Galizia was a Maltese journalist whose anti-corruption investigations exposed powerful people. She was murdered in October by a car bomb.

Galizia used WhatsApp to communicate securely with her sources. Now that she is dead, the Maltese police want to break into her phone or the app, and find out who those sources were.

One journalist reports:

Part of Daphne’s destroyed smart phone was elevated from the scene.

Investigators say that Caruana Galizia had not taken her laptop with her on that particular trip. If she had done so, the forensic experts would have found evidence on the ground.

Her mobile phone is also being examined, as can be seen from her WhatsApp profile, which has registered activity since the murder. But it is understood that the data is safe.

Sources close to the newsroom said that as part of the investigation her sim card has been cloned. This is done with the help of mobile service providers in similar cases. Asked if her WhatsApp messages or any other messages that were stored in her phone will be retrieved, the source said that since the messaging application is encrypted, the messages cannot be seen. Therefore it is unlikely that any data can be retrieved.

I am less optimistic than that reporter. The FBI is providing “specific assistance.” The article doesn’t explain that, but I would not be surprised if they were helping crack the phone.

It will be interesting to see if WhatsApp’s security survives this. My guess is that it depends on how much of the phone was recovered from the bombed car.

Powered by WPeMatico