SSL and internet security news

patching

Auto Added by WPeMatico

New iPhone Zero-Day Discovered

Last year, ZecOps discovered two iPhone zero-day exploits. They will be patched in the next iOS release:

Avraham declined to disclose many details about who the targets were, and did not say whether they lost any data as a result of the attacks, but said “we were a bit surprised about who was targeted.” He said some of the targets were an executive from a telephone carrier in Japan, a “VIP” from Germany, managed security service providers from Saudi Arabia and Israel, people who work for a Fortune 500 company in North America, and an executive from a Swiss company.

[…]

On the other hand, this is not as polished a hack as others, as it relies on sending an oversized email, which may get blocked by certain email providers. Moreover, Avraham said it only works on the default Apple Mail app, and not on Gmail or Outlook, for example.

Powered by WPeMatico

Wi-Fi Chip Vulnerability

There’s a vulnerability in Wi-Fi hardware that breaks the encryption:

The vulnerability exists in Wi-Fi chips made by Cypress Semiconductor and Broadcom, the latter a chipmaker Cypress acquired in 2016. The affected devices include iPhones, iPads, Macs, Amazon Echos and Kindles, Android devices, and Wi-Fi routers from Asus and Huawei, as well as the Raspberry Pi 3. Eset, the security company that discovered the vulnerability, said the flaw primarily affects Cypress’ and Broadcom’s FullMAC WLAN chips, which are used in billions of devices. Eset has named the vulnerability Kr00k, and it is tracked as CVE-2019-15126.

Manufacturers have made patches available for most or all of the affected devices, but it’s not clear how many devices have installed the patches. Of greatest concern are vulnerable wireless routers, which often go unpatched indefinitely.

That’s the real problem. Many of these devices won’t get patched — ever.

Powered by WPeMatico

Zoom Vulnerability

The Zoom conferencing app has a vulnerability that allows someone to remotely take over the computer’s camera.

It’s a bad vulnerability, made worse by the fact that it remains even if you uninstall the Zoom app:

This vulnerability allows any website to forcibly join a user to a Zoom call, with their video camera activated, without the user’s permission.

On top of this, this vulnerability would have allowed any webpage to DOS (Denial of Service) a Mac by repeatedly joining a user to an invalid call.

Additionally, if you’ve ever installed the Zoom client and then uninstalled it, you still have a localhost web server on your machine that will happily re-install the Zoom client for you, without requiring any user interaction on your behalf besides visiting a webpage. This re-install ‘feature’ continues to work to this day.

Zoom didn’t take the vulnerability seriously:

This vulnerability was originally responsibly disclosed on March 26, 2019. This initial report included a proposed description of a ‘quick fix’ Zoom could have implemented by simply changing their server logic. It took Zoom 10 days to confirm the vulnerability. The first actual meeting about how the vulnerability would be patched occurred on June 11th, 2019, only 18 days before the end of the 90-day public disclosure deadline. During this meeting, the details of the vulnerability were confirmed and Zoom’s planned solution was discussed. However, I was very easily able to spot and describe bypasses in their planned fix. At this point, Zoom was left with 18 days to resolve the vulnerability. On June 24th after 90 days of waiting, the last day before the public disclosure deadline, I discovered that Zoom had only implemented the ‘quick fix’ solution originally suggested.

This is why we disclose vulnerabilities. Now, finally, Zoom is taking this seriously and fixing it for real.

Powered by WPeMatico

WhatsApp Vulnerability Fixed

WhatsApp fixed a devastating vulnerability that allowed someone to remotely hack a phone by initiating a WhatsApp voice call. The recipient didn’t even have to answer the call.

The Israeli cyber-arms manufacturer NSO Group is believed to be behind the exploit, but of course there is no definitive proof.

If you use WhatsApp, update your app immediately.

Powered by WPeMatico

Distributing Malware By Becoming an Admin on an Open-Source Project

The module “event-stream” was infected with malware by an anonymous someone who became an admin on the project.

Cory Doctorow points out that this is a clever new attack vector:

Many open source projects attain a level of “maturity” where no one really needs any new features and there aren’t a lot of new bugs being found, and the contributors to these projects dwindle, often to a single maintainer who is generally grateful for developers who take an interest in these older projects and offer to share the choresome, intermittent work of keeping the projects alive.

Ironically, these are often projects with millions of users, who trust them specifically because of their stolid, unexciting maturity.

This presents a scary social-engineering vector for malware: A malicious person volunteers to help maintain the project, makes some small, positive contributions, gets commit access to the project, and releases a malicious patch, infecting millions of users and apps.

Powered by WPeMatico

Security Vulnerability in Smart Electric Outlets

A security vulnerability in Belkin’s Wemo Insight “smartplugs” allows hackers to not only take over the plug, but use it as a jumping-off point to attack everything else on the network.

From the Register:

The bug underscores the primary risk posed by IoT devices and connected appliances. Because they are commonly built by bolting on network connectivity to existing appliances, many IoT devices have little in the way of built-in network security.

Even when security measures are added to the devices, the third-party hardware used to make the appliances “smart” can itself contain security flaws or bad configurations that leave the device vulnerable.

“IoT devices are frequently overlooked from a security perspective; this may be because many are used for seemingly innocuous purposes such as simple home automation,” the McAfee researchers wrote.

“However, these devices run operating systems and require just as much protection as desktop computers.”

I’ll bet you anything that the plug cannot be patched, and that the vulnerability will remain until people throw them away.

Boing Boing post. McAfee’s original security bulletin.

Powered by WPeMatico

E-Mail Vulnerabilities and Disclosure

Last week, researchers disclosed vulnerabilities in a large number of encrypted e-mail clients: specifically, those that use OpenPGP and S/MIME, including Thunderbird and AppleMail. These are serious vulnerabilities: An attacker who can alter mail sent to a vulnerable client can trick that client into sending a copy of the plaintext to a web server controlled by that attacker. The story of these vulnerabilities and the tale of how they were disclosed illustrate some important lessons about security vulnerabilities in general and e-mail security in particular.

But first, if you use PGP or S/MIME to encrypt e-mail, you need to check the list on this page and see if you are vulnerable. If you are, check with the vendor to see if they’ve fixed the vulnerability. (Note that some early patches turned out not to fix the vulnerability.) If not, stop using the encrypted e-mail program entirely until it’s fixed. Or, if you know how to do it, turn off your e-mail client’s ability to process HTML e-mail or — even better — stop decrypting e-mails from within the client. There’s even more complex advice for more sophisticated users, but if you’re one of those, you don’t need me to explain this to you.

Consider your encrypted e-mail insecure until this is fixed.

All software contains security vulnerabilities, and one of the primary ways we all improve our security is by researchers discovering those vulnerabilities and vendors patching them. It’s a weird system: Corporate researchers are motivated by publicity, academic researchers by publication credentials, and just about everyone by individual fame and the small bug-bounties paid by some vendors.

Software vendors, on the other hand, are motivated to fix vulnerabilities by the threat of public disclosure. Without the threat of eventual publication, vendors are likely to ignore researchers and delay patching. This happened a lot in the 1990s, and even today, vendors often use legal tactics to try to block publication. It makes sense; they look bad when their products are pronounced insecure.

Over the past few years, researchers have started to choreograph vulnerability announcements to make a big press splash. Clever names — the e-mail vulnerability is called “Efail” — websites, and cute logos are now common. Key reporters are given advance information about the vulnerabilities. Sometimes advance teasers are released. Vendors are now part of this process, trying to announce their patches at the same time the vulnerabilities are announced.

This simultaneous announcement is best for security. While it’s always possible that some organization — either government or criminal — has independently discovered and is using the vulnerability before the researchers go public, use of the vulnerability is essentially guaranteed after the announcement. The time period between announcement and patching is the most dangerous, and everyone except would-be attackers wants to minimize it.

Things get much more complicated when multiple vendors are involved. In this case, Efail isn’t a vulnerability in a particular product; it’s a vulnerability in a standard that is used in dozens of different products. As such, the researchers had to ensure both that everyone knew about the vulnerability in time to fix it and that no one leaked the vulnerability to the public during that time. As you can imagine, that’s close to impossible.

Efail was discovered sometime last year, and the researchers alerted dozens of different companies between last October and March. Some companies took the news more seriously than others. Most patched. Amazingly, news about the vulnerability didn’t leak until the day before the scheduled announcement date. Two days before the scheduled release, the researchers unveiled a teaser — honestly, a really bad idea — which resulted in details leaking.

After the leak, the Electronic Frontier Foundation posted a notice about the vulnerability without details. The organization has been criticized for its announcement, but I am hard-pressed to find fault with its advice. (Note: I am a board member at EFF.) Then, the researchers published — and lots of press followed.

All of this speaks to the difficulty of coordinating vulnerability disclosure when it involves a large number of companies or — even more problematic — communities without clear ownership. And that’s what we have with OpenPGP. It’s even worse when the bug involves the interaction between different parts of a system. In this case, there’s nothing wrong with PGP or S/MIME in and of themselves. Rather, the vulnerability occurs because of the way many e-mail programs handle encrypted e-mail. GnuPG, an implementation of OpenPGP, decided that the bug wasn’t its fault and did nothing about it. This is arguably true, but irrelevant. They should fix it.

Expect more of these kinds of problems in the future. The Internet is shifting from a set of systems we deliberately use — our phones and computers — to a fully immersive Internet-of-things world that we live in 24/7. And like this e-mail vulnerability, vulnerabilities will emerge through the interactions of different systems. Sometimes it will be obvious who should fix the problem. Sometimes it won’t be. Sometimes it’ll be two secure systems that, when interact in a particular way, cause an insecurity. In April, I wrote about a vulnerability that arose because Google and Netflix make different assumptions about e-mail addresses. I don’t even know who to blame for that one.

It gets even worse. Our system of disclosure and patching assumes that vendors have the expertise and ability to patch their systems, but that simply isn’t true for many of the embedded and low-cost Internet of things software packages. They’re designed at a much lower cost, often by offshore teams that come together, create the software, and then disband; as a result, there simply isn’t anyone left around to receive vulnerability alerts from researchers and write patches. Even worse, many of these devices aren’t patchable at all. Right now, if you own a digital video recorder that’s vulnerable to being recruited for a botnet — remember Mirai from 2016? — the only way to patch it is to throw it away and buy a new one.

Patching is starting to fail, which means that we’re losing the best mechanism we have for improving software security at exactly the same time that software is gaining autonomy and physical agency. Many researchers and organizations, including myself, have proposed government regulations enforcing minimal security-standards for Internet-of-things devices, including standards around vulnerability disclosure and patching. This would be expensive, but it’s hard to see any other viable alternative.

Getting back to e-mail, the truth is that it’s incredibly difficult to secure well. Not because the cryptography is hard, but because we expect e-mail to do so many things. We use it for correspondence, for conversations, for scheduling, and for record-keeping. I regularly search my 20-year e-mail archive. The PGP and S/MIME security protocols are outdated, needlessly complicated and have been difficult to properly use the whole time. If we could start again, we would design something better and more user friendly¬≠but the huge number of legacy applications that use the existing standards mean that we can’t. I tell people that if they want to communicate securely with someone, to use one of the secure messaging systems: Signal, Off-the-Record, or — if having one of those two on your system is itself suspicious — WhatsApp. Of course they’re not perfect, as last week’s announcement of a vulnerability (patched within hours) in Signal illustrates. And they’re not as flexible as e-mail, but that makes them easier to secure.

This essay previously appeared on Lawfare.com.

Powered by WPeMatico

Security Vulnerabilities in VingCard Electronic Locks

Researchers have disclosed a massive vulnerability in the VingCard eletronic lock system, used in hotel rooms around the world:

With a $300 Proxmark RFID card reading and writing tool, any expired keycard pulled from the trash of a target hotel, and a set of cryptographic tricks developed over close to 15 years of on-and-off analysis of the codes Vingcard electronically writes to its keycards, they found a method to vastly narrow down a hotel’s possible master key code. They can use that handheld Proxmark device to cycle through all the remaining possible codes on any lock at the hotel, identify the correct one in about 20 tries, and then write that master code to a card that gives the hacker free reign to roam any room in the building. The whole process takes about a minute.

[…]

The two researchers say that their attack works only on Vingcard’s previous-generation Vision locks, not the company’s newer Visionline product. But they estimate that it nonetheless affects 140,000 hotels in more than 160 countries around the world; the researchers say that Vingcard’s Swedish parent company, Assa Abloy, admitted to them that the problem affects millions of locks in total. When WIRED reached out to Assa Abloy, however, the company put the total number of vulnerable locks somewhat lower, between 500,000 and a million.

Patching is a nightmare. It requires updating the firmware on every lock individually.

And the researchers speculate whether or not others knew of this hack:

The F-Secure researchers admit they don’t know if their Vinguard attack has occurred in the real world. But the American firm LSI, which trains law enforcement agencies in bypassing locks, advertises Vingcard’s products among those it promises to teach students to unlock. And the F-Secure researchers point to a 2010 assassination of a Palestinian Hamas official in a Dubai hotel, widely believed to have been carried out by the Israeli intelligence agency Mossad. The assassins in that case seemingly used a vulnerability in Vingcard locks to enter their target’s room, albeit one that required re-programming the lock. “Most probably Mossad has a capability to do something like this,” Tuominen says.

Slashdot post.

Powered by WPeMatico