SSL and internet security news

fraud

Auto Added by WPeMatico

Details of the Cloud Hopper Attacks

Reuters has a long article on the Chinese government APT attack called Cloud Hopper. It was much bigger than originally reported.

The hacking campaign, known as “Cloud Hopper,” was the subject of a U.S. indictment in December that accused two Chinese nationals of identity theft and fraud. Prosecutors described an elaborate operation that victimized multiple Western companies but stopped short of naming them. A Reuters report at the time identified two: Hewlett Packard Enterprise and IBM.

Yet the campaign ensnared at least six more major technology firms, touching five of the world’s 10 biggest tech service providers.

Also compromised by Cloud Hopper, Reuters has found: Fujitsu, Tata Consultancy Services, NTT Data, Dimension Data, Computer Sciences Corporation and DXC Technology. HPE spun-off its services arm in a merger with Computer Sciences Corporation in 2017 to create DXC.

Waves of hacking victims emanate from those six plus HPE and IBM: their clients. Ericsson, which competes with Chinese firms in the strategically critical mobile telecoms business, is one. Others include travel reservation system Sabre, the American leader in managing plane bookings, and the largest shipbuilder for the U.S. Navy, Huntington Ingalls Industries, which builds America’s nuclear submarines at a Virginia shipyard.

Powered by WPeMatico

The Cost of Cybercrime

Really interesting paper calculating the worldwide cost of cybercrime:

Abstract: In 2012 we presented the first systematic study of the costs of cybercrime. In this paper,we report what has changed in the seven years since. The period has seen major platform evolution, with the mobile phone replacing the PC and laptop as the consumer terminal of choice, with Android replacing Windows, and with many services moving to the cloud.The use of social networks has become extremely widespread. The executive summary is that about half of all property crime, by volume and by value, is now online. We hypothesised in 2012 that this might be so; it is now established by multiple victimisation studies.Many cybercrime patterns appear to be fairly stable, but there are some interesting changes.Payment fraud, for example, has more than doubled in value but has fallen slightly as a proportion of payment value; the payment system has simply become bigger, and slightly more efficient. Several new cybercrimes are significant enough to mention, including business email compromise and crimes involving cryptocurrencies. The move to the cloud means that system misconfiguration may now be responsible for as many breaches as phishing. Some companies have suffered large losses as a side-effect of denial-of-service worms released by state actors, such as NotPetya; we have to take a view on whether they count as cybercrime.The infrastructure supporting cybercrime, such as botnets, continues to evolve, and specific crimes such as premium-rate phone scams have evolved some interesting variants. The over-all picture is the same as in 2012: traditional offences that are now technically ‘computercrimes’ such as tax and welfare fraud cost the typical citizen in the low hundreds of Euros/dollars a year; payment frauds and similar offences, where the modus operandi has been completely changed by computers, cost in the tens; while the new computer crimes cost in the tens of cents. Defending against the platforms used to support the latter two types of crime cost citizens in the tens of dollars. Our conclusions remain broadly the same as in 2012:it would be economically rational to spend less in anticipation of cybercrime (on antivirus, firewalls, etc.) and more on response. We are particularly bad at prosecuting criminals who operate infrastructure that other wrongdoers exploit. Given the growing realisation among policymakers that crime hasn’t been falling over the past decade, merely moving online, we might reasonably hope for better funded and coordinated law-enforcement action.

Richard Clayton gave a presentation on this yesterday at WEIS. His final slide contained a summary.

  • Payment fraud is up, but credit card sales are up even more — so we’re winning.

  • Cryptocurrencies are enabling new scams, but the big money is still being lost in more traditional investment fraud.

  • Telcom fraud is down, basically because Skype is free.

  • Anti-virus fraud has almost disappeared, but tech support scams are growing very rapidly.

  • The big money is still in tax fraud, welfare fraud, VAT fraud, and so on.

  • We spend more money on cyber defense than we do on the actual losses.

  • Criminals largely act with impunity. They don’t believe they will get caught, and mostly that’s correct.

Bottom line: the technology has changed a lot since 2012, but the economic considerations remain unchanged.

Powered by WPeMatico

Fraudulent Academic Papers

The term “fake news” has lost much of its meaning, but it describes a real and dangerous Internet trend. Because it’s hard for many people to differentiate a real news site from a fraudulent one, they can be hoodwinked by fictitious news stories pretending to be real. The result is that otherwise reasonable people believe lies.

The trends fostering fake news are more general, though, and we need to start thinking about how it could affect different areas of our lives. In particular, I worry about how it will affect academia. In addition to fake news, I worry about fake research.

An example of this seems to have happened recently in the cryptography field. SIMON is a block cipher designed by the National Security Agency (NSA) and made public in 2013. It’s a general design optimized for hardware implementation, with a variety of block sizes and key lengths. Academic cryptanalysts have been trying to break the cipher since then, with some pretty good results, although the NSA’s specified parameters are still immune to attack. Last week, a paper appeared on the International Association for Cryptologic Research (IACR) ePrint archive purporting to demonstrate a much more effective break of SIMON, one that would affect actual implementations. The paper was sufficiently weird, the authors sufficiently unknown and the details of the attack sufficiently absent, that the editors took it down a few days later. No harm done in the end.

In recent years, there has been a push to speed up the process of disseminating research results. Instead of the laborious process of academic publication, researchers have turned to faster online publishing processes, preprint servers, and simply posting research results. The IACR ePrint archive is one of those alternatives. This has all sorts of benefits, but one of the casualties is the process of peer review. As flawed as that process is, it does help ensure the accuracy of results. (Of course, bad papers can still make it through the process. We’re still dealing with the aftermath of a flawed, and now retracted, Lancet paper linking vaccines with autism.)

Like the news business, academic publishing is subject to abuse. We can only speculate the motivations of the three people who are listed as authors on the SIMON paper, but you can easily imagine better-executed and more nefarious scenarios. In a world of competitive research, one group might publish a fake result to throw other researchers off the trail. It might be a company trying to gain an advantage over a potential competitor, or even a country trying to gain an advantage over another country.

Reverting to a slower and more accurate system isn’t the answer; the world is just moving too fast for that. We need to recognize that fictitious research results can now easily be injected into our academic publication system, and tune our skepticism meters accordingly.

This essay previously appeared on Lawfare.com.

Powered by WPeMatico

Amazon Is Losing the War on Fraudulent Sellers

Excellent article on fraudulent seller tactics on Amazon.

The most prominent black hat companies for US Amazon sellers offer ways to manipulate Amazon’s ranking system to promote products, protect accounts from disciplinary actions, and crush competitors. Sometimes, these black hat companies bribe corporate Amazon employees to leak information from the company’s wiki pages and business reports, which they then resell to marketplace sellers for steep prices. One black hat company charges as much as $10,000 a month to help Amazon sellers appear at the top of product search results. Other tactics to promote sellers’ products include removing negative reviews from product pages and exploiting technical loopholes on Amazon’s site to lift products’ overall sales rankings.

[…]

AmzPandora’s services ranged from small tasks to more ambitious strategies to rank a product higher using Amazon’s algorithm. While it was online, it offered to ping internal contacts at Amazon for $500 to get information about why a seller’s account had been suspended, as well as advice on how to appeal the suspension. For $300, the company promised to remove an unspecified number of negative reviews on a listing within three to seven days, which would help increase the overall star rating for a product. For $1.50, the company offered a service to fool the algorithm into believing a product had been added to a shopper’s cart or wish list by writing a super URL. And for $1,200, an Amazon seller could purchase a “frequently bought together” spot on another marketplace product’s page that would appear for two weeks, which AmzPandora promised would lead to a 10% increase in sales.

This was a good article on this from last year. (My blog post.)

Amazon has a real problem here, primarily because trust in the system is paramount to Amazon’s success. As much as they need to crack down on fraudulent sellers, they really want articles like these to not be written.

Slashdot thread. Boing Boing post.

Powered by WPeMatico

I Am Not Associated with Swift Recovery Ltd.

It seems that someone from a company called Swift Recovery Ltd. is impersonating me — at least on Telegram. The person is using a photo of me, and is using details of my life available on Wikipedia to convince people that they are me.

They are not.

If anyone has any more information — stories, screen shots of chats, etc. — please forward them to me.

Powered by WPeMatico

Using Gmail “Dot Addresses” to Commit Fraud

In Gmail addresses, the dots don’t matter. The account “bruceschneier@gmail.com” maps to the exact same address as “bruce.schneier@gmail.com” and “b.r.u.c.e.schneier@gmail.com” — and so on. (Note: I own none of those addresses, if they are actually valid.)

This fact can be used to commit fraud:

Recently, we observed a group of BEC actors make extensive use of Gmail dot accounts to commit a large and diverse amount of fraud. Since early 2018, this group has used this fairly simple tactic to facilitate the following fraudulent activities:

  • Submit 48 credit card applications at four US-based financial institutions, resulting in the approval of at least $65,000 in fraudulent credit
  • Register for 14 trial accounts with a commercial sales leads service to collect targeting data for BEC attacks
  • File 13 fraudulent tax returns with an online tax filing service
  • Submit 12 change of address requests with the US Postal Service
  • Submit 11 fraudulent Social Security benefit applications
  • Apply for unemployment benefits under nine identities in a large US state
  • Submit applications for FEMA disaster assistance under three identities

In each case, the scammers created multiple accounts on each website within a short period of time, modifying the placement of periods in the email address for each account. Each of these accounts is associated with a different stolen identity, but all email from these services are received by the same Gmail account. Thus, the group is able to centralize and organize their fraudulent activity around a small set of email accounts, thereby increasing productivity and making it easier to continue their fraudulent behavior.

This isn’t a new trick. It has been previously documented as a way to trick Netflix users.

News article.

Slashdot thread.

Powered by WPeMatico