SSL and internet security news

encryption

Auto Added by WPeMatico

RSA-240 Factored

This just in:

We are pleased to announce the factorization of RSA-240, from RSA’s challenge list, and the computation of a discrete logarithm of the same size (795 bits):

RSA-240 = 12462036678171878406583504460810659043482037465167880575481878888328 966680118821085503603957027250874750986476843845862105486553797025393057189121 768431828636284694840530161441643046806687569941524699318570418303051254959437 1372159029236099 = 509435952285839914555051023580843714132648382024111473186660296521821206469746 700620316443478873837606252372049619334517 * 244624208838318150567813139024002896653802092578931401452041221336558477095178 155258218897735030590669041302045908071447

[…]

The previous records were RSA-768 (768 bits) in December 2009 [2], and a 768-bit prime discrete logarithm in June 2016 [3].

It is the first time that two records for integer factorization and discrete logarithm are broken together, moreover with the same hardware and software.

Both computations were performed with the Number Field Sieve algorithm, using the open-source CADO-NFS software [4].

The sum of the computation time for both records is roughly 4000 core-years, using Intel Xeon Gold 6130 CPUs as a reference (2.1GHz). A rough breakdown of the time spent in the main computation steps is as follows.

RSA-240 sieving: 800 physical core-years
RSA-240 matrix: 100 physical core-years
DLP-240 sieving: 2400 physical core-years
DLP-240 matrix: 700 physical core-years

The computation times above are well below the time that was spent with the previous 768-bit records. To measure how much of this can be attributed to Moore’s law, we ran our software on machines that are identical to those cited in the 768-bit DLP computation [3], and reach the conclusion that sieving for our new record size on these old machines would have taken 25% less time than the reported sieving time of the 768-bit DLP computation.

Powered by WPeMatico

The NSA Warns of TLS Inspection

The NSA has released a security advisory warning of the dangers of TLS inspection:

Transport Layer Security Inspection (TLSI), also known as TLS break and inspect, is a security process that allows enterprises to decrypt traffic, inspect the decrypted content for threats, and then re-encrypt the traffic before it enters or leaves the network. Introducing this capability into an enterprise enhances visibility within boundary security products, but introduces new risks. These risks, while not inconsequential, do have mitigations.

[…]

The primary risk involved with TLSI’s embedded CA is the potential abuse of the CA to issue unauthorized certificates trusted by the TLS clients. Abuse of a trusted CA can allow an adversary to sign malicious code to bypass host IDS/IPSs or to deploy malicious services that impersonate legitimate enterprise services to the hosts.

[…]

A further risk of introducing TLSI is that an adversary can focus their exploitation efforts on a single device where potential traffic of interest is decrypted, rather than try to exploit each location where the data is stored.Setting a policy to enforce that traffic is decrypted and inspected only as authorized, and ensuring that decrypted traffic is contained in an out-of-band, isolated segment of the network prevents unauthorized access to the decrypted traffic.

[…]

To minimize the risks described above, breaking and inspecting TLS traffic should only be conducted once within the enterprise network. Redundant TLSI, wherein a client-server traffic flow is decrypted, inspected, and re-encrypted by one forward proxy and is then forwarded to a second forward proxy for more of the same,should not be performed.Inspecting multiple times can greatly complicate diagnosing network issues with TLS traffic. Also, multi-inspection further obscures certificates when trying to ascertain whether a server should be trusted. In this case, the “outermost” proxy makes the decisions on what server certificates or CAs should be trusted and is the only location where certificate pinning can be performed.Finally, a single TLSI implementation is sufficient for detecting encrypted traffic threats; additional TLSI will have access to the same traffic. If the first TLSI implementation detected a threat, killed the session, and dropped the traffic, then additional TLSI implementations would be rendered useless since they would not even receive the dropped traffic for further inspection. Redundant TLSI increases the risk surface, provides additional opportunities for adversaries to gain unauthorized access to decrypted traffic, and offers no additional benefits.

Nothing surprising or novel. No operational information about who might be implementing these attacks. No classified information revealed.

News article.

Powered by WPeMatico

Eavesdropping on SMS Messages inside Telco Networks

Fireeye reports on a Chinese-sponsored espionage effort to eavesdrop on text messages:

FireEye Mandiant recently discovered a new malware family used by APT41 (a Chinese APT group) that is designed to monitor and save SMS traffic from specific phone numbers, IMSI numbers and keywords for subsequent theft. Named MESSAGETAP, the tool was deployed by APT41 in a telecommunications network provider in support of Chinese espionage efforts. APT41’s operations have included state-sponsored cyber espionage missions as well as financially-motivated intrusions. These operations have spanned from as early as 2012 to the present day. For an overview of APT41, see our August 2019 blog post or our full published report.

Yet another example that demonstrates why end-to-end message encryption is so important.

Powered by WPeMatico

Former FBI General Counsel Jim Baker Chooses Encryption Over Backdoors

In an extraordinary essay, the former FBI general counsel Jim Baker makes the case for strong encryption over government-mandated backdoors:

In the face of congressional inaction, and in light of the magnitude of the threat, it is time for governmental authorities­ — including law enforcement­ — to embrace encryption because it is one of the few mechanisms that the United States and its allies can use to more effectively protect themselves from existential cybersecurity threats, particularly from China. This is true even though encryption will impose costs on society, especially victims of other types of crime.

[…]

I am unaware of a technical solution that will effectively and simultaneously reconcile all of the societal interests at stake in the encryption debate, such as public safety, cybersecurity and privacy as well as simultaneously fostering innovation and the economic competitiveness of American companies in a global marketplace.

[…]

All public safety officials should think of protecting the cybersecurity of the United States as an essential part of their core mission to protect the American people and uphold the Constitution. And they should be doing so even if there will be real and painful costs associated with such a cybersecurity-forward orientation. The stakes are too high and our current cybersecurity situation too grave to adopt a different approach.

Basically, he argues that the security value of strong encryption greatly outweighs the security value of encryption that can be bypassed. He endorses a “defense dominant” strategy for Internet security.

Keep in mind that Baker led the FBI’s legal case against Apple regarding the San Bernardino shooter’s encrypted iPhone. In writing this piece, Baker joins the growing list of former law enforcement and national security senior officials who have come out in favor of strong encryption over backdoors: Michael Hayden, Michael Chertoff, Richard Clarke, Ash Carter, William Lynn, and Mike McConnell.

Edward Snowden also agrees.

EDITED TO ADD: Good commentary from Cory Doctorow.

Powered by WPeMatico

NordVPN Breached

There was a successful attack against NordVPN:

Based on the command log, another of the leaked secret keys appeared to secure a private certificate authority that NordVPN used to issue digital certificates. Those certificates might be issued for other servers in NordVPN’s network or for a variety of other sensitive purposes. The name of the third certificate suggested it could also have been used for many different sensitive purposes, including securing the server that was compromised in the breach.

The revelations came as evidence surfaced suggesting that two rival VPN services, TorGuard and VikingVPN, also experienced breaches that leaked encryption keys. In a statement, TorGuard said a secret key for a transport layer security certificate for *.torguardvpnaccess.com was stolen. The theft happened in a 2017 server breach. The stolen data related to a squid proxy certificate.

TorGuard officials said on Twitter that the private key was not on the affected server and that attackers “could do nothing with those keys.” Monday’s statement went on to say TorGuard didn’t remove the compromised server until early 2018. TorGuard also said it learned of VPN breaches last May, “and in a related development we filed a legal complaint against NordVPN.”

The breach happened nineteen months ago, but the company is only just disclosing it to the public. We don’t know exactly what was stolen and how it affects VPN security. More details are needed.

VPNs are a shadowy world. We use them to protect our Internet traffic when we’re on a network we don’t trust, but we’re forced to trust the VPN instead. Recommendations are hard. NordVPN’s website says that the company is based in Panama. Do we have any reason to trust it at all?

I’m curious what VPNs others use, and why they should be believed to be trustworthy.

Powered by WPeMatico

More on Law Enforcement Backdoor Demands

The Carnegie Endowment for International Peace and Princeton University’s Center for Information Technology Policy convened an Encryption Working Group to attempt progress on the “going dark” debate. They have released their report: “Moving the Encryption Policy Conversation Forward.

The main contribution seems to be that attempts to backdoor devices like smartphones shouldn’t also backdoor communications systems:

Conclusion: There will be no single approach for requests for lawful access that can be applied to every technology or means of communication. More work is necessary, such as that initiated in this paper, to separate the debate into its component parts, examine risks and benefits in greater granularity, and seek better data to inform the debate. Based on our attempt to do this for one particular area, the working group believes that some forms of access to encrypted information, such as access to data at rest on mobile phones, should be further discussed. If we cannot have a constructive dialogue in that easiest of cases, then there is likely none to be had with respect to any of the other areas. Other forms of access to encrypted information, including encrypted data-in-motion, may not offer an achievable balance of risk vs. benefit, and as such are not worth pursuing and should not be the subject of policy changes, at least for now. We believe that to be productive, any approach must separate the issue into its component parts.

I don’t believe that backdoor access to encryption data at rest offers “an achievable balance of risk vs. benefit” either, but I agree that the two aspects should be treated independently.

Powered by WPeMatico

The Myth of Consumer-Grade Security

The Department of Justice wants access to encrypted consumer devices but promises not to infiltrate business products or affect critical infrastructure. Yet that’s not possible, because there is no longer any difference between those categories of devices. Consumer devices are critical infrastructure. They affect national security. And it would be foolish to weaken them, even at the request of law enforcement.

In his keynote address at the International Conference on Cybersecurity, Attorney General William Barr argued that companies should weaken encryption systems to gain access to consumer devices for criminal investigations. Barr repeated a common fallacy about a difference between military-grade encryption and consumer encryption: “After all, we are not talking about protecting the nation’s nuclear launch codes. Nor are we necessarily talking about the customized encryption used by large business enterprises to protect their operations. We are talking about consumer products and services such as messaging, smart phones, e-mail, and voice and data applications.”

The thing is, that distinction between military and consumer products largely doesn’t exist. All of those “consumer products” Barr wants access to are used by government officials — heads of state, legislators, judges, military commanders and everyone else — worldwide. They’re used by election officials, police at all levels, nuclear power plant operators, CEOs and human rights activists. They’re critical to national security as well as personal security.

This wasn’t true during much of the Cold War. Before the Internet revolution, military-grade electronics were different from consumer-grade. Military contracts drove innovation in many areas, and those sectors got the cool new stuff first. That started to change in the 1980s, when consumer electronics started to become the place where innovation happened. The military responded by creating a category of military hardware called COTS: commercial off-the-shelf technology. More consumer products became approved for military applications. Today, pretty much everything that doesn’t have to be hardened for battle is COTS and is the exact same product purchased by consumers. And a lot of battle-hardened technologies are the same computer hardware and software products as the commercial items, but in sturdier packaging.

Through the mid-1990s, there was a difference between military-grade encryption and consumer-grade encryption. Laws regulated encryption as a munition and limited what could legally be exported only to key lengths that were easily breakable. That changed with the rise of Internet commerce, because the needs of commercial applications more closely mirrored the needs of the military. Today, the predominant encryption algorithm for commercial applications — Advanced Encryption Standard (AES) — is approved by the National Security Agency (NSA) to secure information up to the level of Top Secret. The Department of Defense’s classified analogs of the Internet­ — Secret Internet Protocol Router Network (SIPRNet), Joint Worldwide Intelligence Communications System (JWICS) and probably others whose names aren’t yet public — use the same Internet protocols, software, and hardware that the rest of the world does, albeit with additional physical controls. And the NSA routinely assists in securing business and consumer systems, including helping Google defend itself from Chinese hackers in 2010.

Yes, there are some military applications that are different. The US nuclear system Barr mentions is one such example — and it uses ancient computers and 8-inch floppy drives. But for pretty much everything that doesn’t see active combat, it’s modern laptops, iPhones, the same Internet everyone else uses, and the same cloud services.

This is also true for corporate applications. Corporations rarely use customized encryption to protect their operations. They also use the same types of computers, networks, and cloud services that the government and consumers use. Customized security is both more expensive because it is unique, and less secure because it’s nonstandard and untested.

During the Cold War, the NSA had the dual mission of attacking Soviet computers and communications systems and defending domestic counterparts. It was possible to do both simultaneously only because the two systems were different at every level. Today, the entire world uses Internet protocols; iPhones and Android phones; and iMessage, WhatsApp and Signal to secure their chats. Consumer-grade encryption is the same as military-grade encryption, and consumer security is the same as national security.

Barr can’t weaken consumer systems without also weakening commercial, government, and military systems. There’s one world, one network, and one answer. As a matter of policy, the nation has to decide which takes precedence: offense or defense. If security is deliberately weakened, it will be weakened for everybody. And if security is strengthened, it is strengthened for everybody. It’s time to accept the fact that these systems are too critical to society to weaken. Everyone will be more secure with stronger encryption, even if it means the bad guys get to use that encryption as well.

This essay previously appeared on Lawfare.com.

Powered by WPeMatico

Facebook Plans on Backdooring WhatsApp

This article points out that Facebook’s planned content moderation scheme will result in an encryption backdoor into WhatsApp:

In Facebook’s vision, the actual end-to-end encryption client itself such as WhatsApp will include embedded content moderation and blacklist filtering algorithms. These algorithms will be continually updated from a central cloud service, but will run locally on the user’s device, scanning each cleartext message before it is sent and each encrypted message after it is decrypted.

The company even noted that when it detects violations it will need to quietly stream a copy of the formerly encrypted content back to its central servers to analyze further, even if the user objects, acting as true wiretapping service.

Facebook’s model entirely bypasses the encryption debate by globalizing the current practice of compromising devices by building those encryption bypasses directly into the communications clients themselves and deploying what amounts to machine-based wiretaps to billions of users at once.

Once this is in place, it’s easy for the government to demand that Facebook add another filter — one that searches for communications that they care about — and alert them when it gets triggered.

Of course alternatives like Signal will exist for those who don’t want to be subject to Facebook’s content moderation, but what happens when this filtering technology is built into operating systems?

The problem is that if Facebook’s model succeeds, it will only be a matter of time before device manufacturers and mobile operating system developers embed similar tools directly into devices themselves, making them impossible to escape. Embedding content scanning tools directly into phones would make it possible to scan all apps, including ones like Signal, effectively ending the era of encrypted communications.

I don’t think this will happen — why does AT&T care about content moderation — but it is something to watch?

Powered by WPeMatico

Attorney General William Barr on Encryption Policy

Yesterday, Attorney General William Barr gave a major speech on encryption policy — what is commonly known as “going dark.” Speaking at Fordham University in New York, he admitted that adding backdoors decreases security but that it is worth it.

Some hold this view dogmatically, claiming that it is technologically impossible to provide lawful access without weakening security against unlawful access. But, in the world of cybersecurity, we do not deal in absolute guarantees but in relative risks. All systems fall short of optimality and have some residual risk of vulnerability a point which the tech community acknowledges when they propose that law enforcement can satisfy its requirements by exploiting vulnerabilities in their products. The real question is whether the residual risk of vulnerability resulting from incorporating a lawful access mechanism is materially greater than those already in the unmodified product. The Department does not believe this can be demonstrated.

Moreover, even if there was, in theory, a slight risk differential, its significance should not be judged solely by the extent to which it falls short of theoretical optimality. Particularly with respect to encryption marketed to consumers, the significance of the risk should be assessed based on its practical effect on consumer cybersecurity, as well as its relation to the net risks that offering the product poses for society. After all, we are not talking about protecting the Nation’s nuclear launch codes. Nor are we necessarily talking about the customized encryption used by large business enterprises to protect their operations. We are talking about consumer products and services such as messaging, smart phones, e-mail, and voice and data applications. If one already has an effective level of security say, by way of illustration, one that protects against 99 percent of foreseeable threats is it reasonable to incur massive further costs to move slightly closer to optimality and attain a 99.5 percent level of protection? A company would not make that expenditure; nor should society. Here, some argue that, to achieve at best a slight incremental improvement in security, it is worth imposing a massive cost on society in the form of degraded safety. This is untenable. If the choice is between a world where we can achieve a 99 percent assurance against cyber threats to consumers, while still providing law enforcement 80 percent of the access it might seek; or a world, on the other hand, where we have boosted our cybersecurity to 99.5 percent but at a cost reducing law enforcements [sic] access to zero percent the choice for society is clear.

I think this is a major change in government position. Previously, the FBI, the Justice Department and so on had claimed that backdoors for law enforcement could be added without any loss of security. They maintained that technologists just need to figure out how: ­an approach we have derisively named “nerd harder.”

With this change, we can finally have a sensible policy conversation. Yes, adding a backdoor increases our collective security because it allows law enforcement to eavesdrop on the bad guys. But adding that backdoor also decreases our collective security because the bad guys can eavesdrop on everyone. This is exactly the policy debate we should be having­not the fake one about whether or not we can have both security and surveillance.

Barr makes the point that this is about “consumer cybersecurity,” and not “nuclear launch codes.” This is true, but ignores the huge amount of national security-related communications between those two poles. The same consumer communications and computing devices are used by our lawmakers, CEOs, legislators, law enforcement officers, nuclear power plant operators, election officials and so on. There’s no longer a difference between consumer tech and government tech — it’s all the same tech.

Barr also says:

Further, the burden is not as onerous as some make it out to be. I served for many years as the general counsel of a large telecommunications concern. During my tenure, we dealt with these issues and lived through the passage and implementation of CALEA the Communications Assistance for Law Enforcement Act. CALEA imposes a statutory duty on telecommunications carriers to maintain the capability to provide lawful access to communications over their facilities. Companies bear the cost of compliance but have some flexibility in how they achieve it, and the system has by and large worked. I therefore reserve a heavy dose of skepticism for those who claim that maintaining a mechanism for lawful access would impose an unreasonable burden on tech firms especially the big ones. It is absurd to think that we would preserve lawful access by mandating that physical telecommunications facilities be accessible to law enforcement for the purpose of obtaining content, while allowing tech providers to block law enforcement from obtaining that very content.

That telecommunications company was GTE­which became Verizon. Barr conveniently ignores that CALEA-enabled phone switches were used to spy on government officials in Greece in 2003 — which seems to have been an NSA operation — and on a variety of people in Italy in 2006. Moreover, in 2012 every CALEA-enabled switch sold to the Defense Department had security vulnerabilities. (I wrote about all this, and more, in 2013.)

The final thing I noticed about the speech is that is it not about iPhones and data at rest. It is about communications: ­data in transit. The “going dark” debate has bounced back and forth between those two aspects for decades. It seems to be bouncing once again.

I hope that Barr’s latest speech signals that we can finally move on from the fake security vs. privacy debate, and to the real security vs. security debate. I know where I stand on that: As computers continue to permeate every aspect of our lives, society, and critical infrastructure, it is much more important to ensure that they are secure from everybody — even at the cost of law-enforcement access — than it is to allow access at the cost of security. Barr is wrong, it kind of is like these systems are protecting nuclear launch codes.

This essay previously appeared on Lawfare.com.

EDITED TO ADD: More news articles.

Powered by WPeMatico