SSL and internet security news


Auto Added by WPeMatico

Security Vulnerability in ESS ExpressVote Touchscreen Voting Computer

Of course the ESS ExpressVote voting computer will have lots of security vulnerabilities. It’s a computer, and computers have lots of vulnerabilities. This particular vulnerability is particularly interesting because it’s the result of a security mistake in the design process. Someone didn’t think the security through, and the result is a voter-verifiable paper audit trail that doesn’t provide the security it promises.

Here are the details:

Now there’s an even worse option than “DRE with paper trail”; I call it “press this button if it’s OK for the machine to cheat” option. The country’s biggest vendor of voting machines, ES&S, has a line of voting machines called ExpressVote. Some of these are optical scanners (which are fine), and others are “combination” machines, basically a ballot-marking device and an optical scanner all rolled into one.

This video shows a demonstration of ExpressVote all-in-one touchscreens purchased by Johnson County, Kansas. The voter brings a blank ballot to the machine, inserts it into a slot, chooses candidates. Then the machine prints those choices onto the blank ballot and spits it out for the voter to inspect. If the voter is satisfied, she inserts it back into the slot, where it is counted (and dropped into a sealed ballot box for possible recount or audit).

So far this seems OK, except that the process is a bit cumbersome and not completely intuitive (watch the video for yourself). It still suffers from the problems I describe above: voter may not carefully review all the choices, especially in down-ballot races; counties need to buy a lot more voting machines, because voters occupy the machine for a long time (in contrast to op-scan ballots, where they occupy a cheap cardboard privacy screen).

But here’s the amazingly bad feature: “The version that we have has an option for both ways,” [Johnson County Election Commissioner Ronnie] Metsker said. “We instruct the voters to print their ballots so that they can review their paper ballots, but they’re not required to do so. If they want to press the button ‘cast ballot,’ it will cast the ballot, but if they do so they are doing so with full knowledge that they will not see their ballot card, it will instead be cast, scanned, tabulated and dropped in the secure ballot container at the backside of the machine.” [TYT Investigates, article by Jennifer Cohn, September 6, 2018]

Now it’s easy for a hacked machine to cheat undetectably! All the fraudulent vote-counting program has to do is wait until the voter chooses between “cast ballot without inspecting” and “inspect ballot before casting.” If the latter, then don’t cheat on this ballot. If the former, then change votes how it likes, and print those fraudulent votes on the paper ballot, knowing that the voter has already given up the right to look at it.

A voter-verifiable paper audit trail does not require every voter to verify the paper ballot. But it does require that every voter be able to verify the paper ballot. I am continuously amazed by how bad electronic voting machines are. Yes, they’re computers. But they also seem to be designed by people who don’t understand computer (or any) security.

Powered by WPeMatico

Hacking Police Bodycams

Suprising no one, the security of police bodycams is terrible.

Mitchell even realized that because he can remotely access device storage on models like the Fire Cam OnCall, an attacker could potentially plant malware on some of the cameras. Then, when the camera connects to a PC for syncing, it could deliver all sorts of malicious code: a Windows exploit that could ultimately allow an attacker to gain remote access to the police network, ransomware to spread across the network and lock everything down, a worm that infiltrates the department’s evidence servers and deletes everything, or even cryptojacking software to mine cryptocurrency using police computing resources. Even a body camera with no Wi-Fi connection, like the CeeSc, can be compromised if a hacker gets physical access. “You know not to trust thumb drives, but these things have the same ability,” Mitchell says.

BoingBoing post.

Powered by WPeMatico

1Password’s Travel Mode

The 1Password password manager has just introduced “travel mode,” which allows you to delete your stored passwords when you’re in other countries or crossing borders:

Your vaults aren’t just hidden; they’re completely removed from your devices as long as Travel Mode is on. That includes every item and all your encryption keys. There are no traces left for anyone to find. So even if you’re asked to unlock 1Password by someone at the border, there’s no way for them to tell that Travel Mode is even enabled.

In 1Password Teams, Travel Mode is even cooler. If you’re a team administrator, you have total control over which secrets your employees can travel with. You can turn Travel Mode on and off for your team members, so you can ensure that company information stays safe at all times.

The way this works is important. If the scary border police demand that you unlock your 1Password vault, those passwords/keys are not there for the border police to find.

The only flaw — and this is minor — is that the system requires you to lie. When the scary border police ask you “do you have any other passwords?” or “have you enabled travel mode,” you can’t tell them the truth. In the US, lying to a federal office is a felony.

I previously described a system that doesn’t require you to lie. It’s more complicated to implement, though.

This is a great feature, and I’m happy to see it implemented.

Powered by WPeMatico

Computer Alarm that Triggers When Lid Is Opened

Do Not Disturb” is a Macintosh app that send an alert when the lid is opened. The idea is to detect computer tampering.

Wire article:

Do Not Disturb goes a step further than just the push notification. Using the Do Not Disturb iOS app, a notified user can send themselves a picture snapped with the laptop’s webcam to catch the perpetrator in the act, or they can shut down the computer remotely. The app can also be configured to take more custom actions like sending an email, recording screen activity, and keeping logs of commands executed on the machine.

Can someone please make one of these for Windows?

Powered by WPeMatico

Adding Backdoors at the Chip Level

Interesting research into undetectably adding backdoors into computer chips during manufacture: “Stealthy dopant-level hardware Trojans: extended version,” also available here:

Abstract: In recent years, hardware Trojans have drawn the attention of governments and industry as well as the scientific community. One of the main concerns is that integrated circuits, e.g., for military or critical-infrastructure applications, could be maliciously manipulated during the manufacturing process, which often takes place abroad. However, since there have been no reported hardware Trojans in practice yet, little is known about how such a Trojan would look like and how difficult it would be in practice to implement one. In this paper we propose an extremely stealthy approach for implementing hardware Trojans below the gate level, and we evaluate their impact on the security of the target device. Instead of adding additional circuitry to the target design, we insert our hardware Trojans by changing the dopant polarity of existing transistors. Since the modified circuit appears legitimate on all wiring layers (including all metal and polysilicon), our family of Trojans is resistant to most detection techniques, including fine-grain optical inspection and checking against “golden chips”. We demonstrate the effectiveness of our approach by inserting Trojans into two designs — a digital post-processing derived from Intel’s cryptographically secure RNG design used in the Ivy Bridge processors and a side-channel resistant SBox implementation­ — and by exploring their detectability and their effects on security.

The moral is that this kind of technique is very difficult to detect.

Powered by WPeMatico

Intimate Partner Threat

Princeton’s Karen Levy has a good article computer security and the intimate partner threat:

When you learn that your privacy has been compromised, the common advice is to prevent additional access — delete your insecure account, open a new one, change your password. This advice is such standard protocol for personal security that it’s almost a no-brainer. But in abusive romantic relationships, disconnection can be extremely fraught. For one, it can put the victim at risk of physical harm: If abusers expect digital access and that access is suddenly closed off, it can lead them to become more violent or intrusive in other ways. It may seem cathartic to delete abusive material, like alarming text messages — but if you don’t preserve that kind of evidence, it can make prosecution more difficult. And closing some kinds of accounts, like social networks, to hide from a determined abuser can cut off social support that survivors desperately need. In some cases, maintaining a digital connection to the abuser may even be legally required (for instance, if the abuser and survivor share joint custody of children).

Threats from intimate partners also change the nature of what it means to be authenticated online. In most contexts, access credentials­ — like passwords and security questions — are intended to insulate your accounts against access from an adversary. But those mechanisms are often completely ineffective for security in intimate contexts: The abuser can compel disclosure of your password through threats of violence and has access to your devices because you’re in the same physical space. In many cases, the abuser might even own your phone — or might have access to your communications data because you share a family plan. Things like security questions are unlikely to be effective tools for protecting your security, because the abuser knows or can guess at intimate details about your life — where you were born, what your first job was, the name of your pet.

Powered by WPeMatico