SSL and internet security news

cybercrime

Auto Added by WPeMatico

The Cost of Cybercrime

Really interesting paper calculating the worldwide cost of cybercrime:

Abstract: In 2012 we presented the first systematic study of the costs of cybercrime. In this paper,we report what has changed in the seven years since. The period has seen major platform evolution, with the mobile phone replacing the PC and laptop as the consumer terminal of choice, with Android replacing Windows, and with many services moving to the cloud.The use of social networks has become extremely widespread. The executive summary is that about half of all property crime, by volume and by value, is now online. We hypothesised in 2012 that this might be so; it is now established by multiple victimisation studies.Many cybercrime patterns appear to be fairly stable, but there are some interesting changes.Payment fraud, for example, has more than doubled in value but has fallen slightly as a proportion of payment value; the payment system has simply become bigger, and slightly more efficient. Several new cybercrimes are significant enough to mention, including business email compromise and crimes involving cryptocurrencies. The move to the cloud means that system misconfiguration may now be responsible for as many breaches as phishing. Some companies have suffered large losses as a side-effect of denial-of-service worms released by state actors, such as NotPetya; we have to take a view on whether they count as cybercrime.The infrastructure supporting cybercrime, such as botnets, continues to evolve, and specific crimes such as premium-rate phone scams have evolved some interesting variants. The over-all picture is the same as in 2012: traditional offences that are now technically ‘computercrimes’ such as tax and welfare fraud cost the typical citizen in the low hundreds of Euros/dollars a year; payment frauds and similar offences, where the modus operandi has been completely changed by computers, cost in the tens; while the new computer crimes cost in the tens of cents. Defending against the platforms used to support the latter two types of crime cost citizens in the tens of dollars. Our conclusions remain broadly the same as in 2012:it would be economically rational to spend less in anticipation of cybercrime (on antivirus, firewalls, etc.) and more on response. We are particularly bad at prosecuting criminals who operate infrastructure that other wrongdoers exploit. Given the growing realisation among policymakers that crime hasn’t been falling over the past decade, merely moving online, we might reasonably hope for better funded and coordinated law-enforcement action.

Richard Clayton gave a presentation on this yesterday at WEIS. His final slide contained a summary.

  • Payment fraud is up, but credit card sales are up even more — so we’re winning.

  • Cryptocurrencies are enabling new scams, but the big money is still being lost in more traditional investment fraud.

  • Telcom fraud is down, basically because Skype is free.

  • Anti-virus fraud has almost disappeared, but tech support scams are growing very rapidly.

  • The big money is still in tax fraud, welfare fraud, VAT fraud, and so on.

  • We spend more money on cyber defense than we do on the actual losses.

  • Criminals largely act with impunity. They don’t believe they will get caught, and mostly that’s correct.

Bottom line: the technology has changed a lot since 2012, but the economic considerations remain unchanged.

Powered by WPeMatico

Protecting Yourself from Identity Theft

I don’t have a lot of good news for you. The truth is there’s nothing we can do to protect our data from being stolen by cybercriminals and others.

Ten years ago, I could have given you all sorts of advice about using encryption, not sending information over email, securing your web connections, and a host of other things­ — but most of that doesn’t matter anymore. Today, your sensitive data is controlled by others, and there’s nothing you can personally to do affect its security.

I could give you advice like don’t stay at a hotel (the Marriott breach), don’t get a government clearance (the Office of Personnel Management hack), don’t store your photos online (Apple breach and others), don’t use email (many, many different breaches), and don’t have anything other than an anonymous cash-only relationship with anyone, ever (the Equifax breach). But that’s all ridiculous advice for anyone trying to live a normal life in the 21st century.

The reality is that your sensitive data has likely already been stolen, multiple times. Cybercriminals have your credit card information. They have your social security number and your mother’s maiden name. They have your address and phone number. They obtained the data by hacking any one of the hundreds of companies you entrust with the data­ — and you have no visibility into those companies’ security practices, and no recourse when they lose your data.

Given this, your best option is to turn your efforts toward trying to make sure that your data isn’t used against you. Enable two-factor authentication for all important accounts whenever possible. Don’t reuse passwords for anything important — ­and get a password manager to remember them all.

Do your best to disable the “secret questions” and other backup authentication mechanisms companies use when you forget your password­ — those are invariably insecure. Watch your credit reports and your bank accounts for suspicious activity. Set up credit freezes with the major credit bureaus. Be wary of email and phone calls you get from people purporting to be from companies you do business with.

Of course, it’s unlikely you will do a lot of this. Pretty much no one does. That’s because it’s annoying and inconvenient. This is the reality, though. The companies you do business with have no real incentive to secure your data. The best way for you to protect yourself is to change that incentive, which means agitating for government oversight of this space. This includes proscriptive regulations, more flexible security standards, liabilities, certification, licensing, and meaningful labeling. Once that happens, the market will step in and provide companies with the technologies they can use to secure your data.

This essay previously appeared in the Rochester Review, as part of an alumni forum that asked: “How do you best protect yourself from identity theft?”

Powered by WPeMatico

Banks Attacked through Malicious Hardware Connected to the Local Network

Kaspersky is reporting on a series of bank hacks — called DarkVishnya — perpetrated through malicious hardware being surreptitiously installed into the target network:

In 2017-2018, Kaspersky Lab specialists were invited to research a series of cybertheft incidents. Each attack had a common springboard: an unknown device directly connected to the company’s local network. In some cases, it was the central office, in others a regional office, sometimes located in another country. At least eight banks in Eastern Europe were the targets of the attacks (collectively nicknamed DarkVishnya), which caused damage estimated in the tens of millions of dollars.

Each attack can be divided into several identical stages. At the first stage, a cybercriminal entered the organization’s building under the guise of a courier, job seeker, etc., and connected a device to the local network, for example, in one of the meeting rooms. Where possible, the device was hidden or blended into the surroundings, so as not to arouse suspicion.

The devices used in the DarkVishnya attacks varied in accordance with the cybercriminals’ abilities and personal preferences. In the cases we researched, it was one of three tools:

  • netbook or inexpensive laptop
  • Raspberry Pi computer
  • Bash Bunny, a special tool for carrying out USB attacks

Inside the local network, the device appeared as an unknown computer, an external flash drive, or even a keyboard. Combined with the fact that Bash Bunny is comparable in size to a USB flash drive, this seriously complicated the search for the entry point. Remote access to the planted device was via a built-in or USB-connected GPRS/3G/LTE modem.

Slashdot thread.

Powered by WPeMatico

How to Punish Cybercriminals

Interesting policy paper by Third Way: “To Catch a Hacker: Toward a comprehensive strategy to identify, pursue, and punish malicious cyber actors“:

In this paper, we argue that the United States currently lacks a comprehensive overarching strategic approach to identify, stop and punish cyberattackers. We show that:

  • There is a burgeoning cybercrime wave: A rising and often unseen crime wave is mushrooming in America. There are approximately 300,000 reported malicious cyber incidents per year, including up to 194,000 that could credibly be called individual or system-wide breaches or attempted breaches. This is likely a vast undercount since many victims don’t report break-ins to begin with. Attacks cost the US economy anywhere from $57 billion to $109 billion annually and these costs are increasing.

  • There is a stunning cyber enforcement gap: Our analysis of publicly available data shows that cybercriminals can operate with near impunity compared to their real-world counterparts. We estimate that cyber enforcement efforts are so scattered that less than 1% of malicious cyber incidents see an enforcement action taken against the attackers.

  • There is no comprehensive US cyber enforcement strategy aimed at the human attacker: Despite the recent release of a National Cyber Strategy, the United States still lacks a comprehensive strategic approach to how it identifies, pursues, and punishes malicious human cyberattackers and the organizations and countries often behind them. We believe that the United States is as far from this human attacker strategy as the nation was toward a strategic approach to countering terrorism in the weeks and months before 9/11.

In order to close the cyber enforcement gap, we argue for a comprehensive enforcement strategy that makes a fundamental rebalance in US cybersecurity policies: from a heavy focus on building better cyber defenses against intrusion to also waging a more robust effort at going after human attackers. We call for ten US policy actions that could form the contours of a comprehensive enforcement strategy to better identify, pursue and bring to justice malicious cyber actors that include building up law enforcement, enhancing diplomatic efforts, and developing a measurable strategic plan to do so.

Powered by WPeMatico

Gas Pump Hack

This is weird:

Police in Detroit are looking for two suspects who allegedly managed to hack a gas pump and steal over 600 gallons of gasoline, valued at about $1,800. The theft took place in the middle of the day and went on for about 90 minutes, with the gas station attendant unable to thwart the hackers.

The theft, reported by Fox 2 Detroit, took place at around 1pm local time on June 23 at a Marathon gas station located about 15 minutes from downtown Detroit. At least 10 cars are believed to have benefitted from the free-flowing gas pump, which still has police befuddled.

Here’s what is known about the supposed hack: Per Fox 2 Detroit, the thieves used some sort of remote device that allowed them to hijack the pump and take control away from the gas station employee. Police confirmed to the local publication that the device prevented the clerk from using the gas station’s system to shut off the individual pump.

Slashdot post.

Hard to know what’s true, but it seems like a good example of a hack against a cyber-physical system.

Powered by WPeMatico

Free Societies are at a Disadvantage in National Cybersecurity

Jack Goldsmith and Stuart Russell just published an interesting paper, making the case that free and democratic nations are at a structural disadvantage in nation-on-nation cyberattack and defense. From a blog post:

It seeks to explain why the United States is struggling to deal with the “soft” cyber operations that have been so prevalent in recent years: cyberespionage and cybertheft, often followed by strategic publication; information operations and propaganda; and relatively low-level cyber disruptions such as denial-of-service and ransomware attacks. The main explanation is that constituent elements of U.S. society — a commitment to free speech, privacy and the rule of law; innovative technology firms; relatively unregulated markets; and deep digital sophistication — create asymmetric vulnerabilities that foreign adversaries, especially authoritarian ones, can exploit. These asymmetrical vulnerabilities might explain why the United States so often appears to be on the losing end of recent cyber operations and why U.S. attempts to develop and implement policies to enhance defense, resiliency, response or deterrence in the cyber realm have been ineffective.

I have long thought this to be true. There are defensive cybersecurity measures that a totalitarian country can take that a free, open, democratic country cannot. And there are attacks against a free, open, democratic country that just don’t matter to a totalitarian country. That makes us more vulnerable. (I don’t mean to imply — and neither do Russell and Goldsmith — that this disadvantage implies that free societies are overall worse, but it is an asymmetry that we should be aware of.)

I do worry that these disadvantages will someday become intolerable. Dan Geer often said that “the price of freedom is the probability of crime.” We are willing to pay this price because it isn’t that high. As technology makes individual and small-group actors more powerful, this price will get higher. Will there be a point in the future where free and open societies will no longer be able to survive? I honestly don’t know.

Powered by WPeMatico

Estimating the Cost of Internet Insecurity

It’s really hard to estimate the cost of an insecure Internet. Studies are all over the map. A methodical study by RAND is the best work I’ve seen at trying to put a number on this. The results are, well, all over the map:

Estimating the Global Cost of Cyber Risk: Methodology and Examples“:

Abstract: There is marked variability from study to study in the estimated direct and systemic costs of cyber incidents, which is further complicated by the considerable variation in cyber risk in different countries and industry sectors. This report shares a transparent and adaptable methodology for estimating present and future global costs of cyber risk that acknowledges the considerable uncertainty in the frequencies and costs of cyber incidents. Specifically, this methodology (1) identifies the value at risk by country and industry sector; (2) computes direct costs by considering multiple financial exposures for each industry sector and the fraction of each exposure that is potentially at risk to cyber incidents; and (3) computes the systemic costs of cyber risk between industry sectors using Organisation for Economic Co-operation and Development input, output, and value-added data across sectors in more than 60 countries. The report has a companion Excel-based modeling and simulation platform that allows users to alter assumptions and investigate a wide variety of research questions. The authors used a literature review and data to create multiple sample sets of parameters. They then ran a set of case studies to show the model’s functionality and to compare the results against those in the existing literature. The resulting values are highly sensitive to input parameters; for instance, the global cost of cyber crime has direct gross domestic product (GDP) costs of $275 billion to $6.6 trillion and total GDP costs (direct plus systemic) of $799 billion to $22.5 trillion (1.1 to 32.4 percent of GDP).

Here’s Rand’s risk calculator, if you want to play with the parameters yourself.

Note: I was an advisor to the project.

Separately, Symantec has published a new cybercrime report with their own statistics.

Powered by WPeMatico

Cybercriminals Infiltrating E-Mail Networks to Divert Large Customer Payments

There’s a new criminal tactic involving hacking an e-mail account of a company that handles high-value transactions and diverting payments. Here it is in real estate:

The scam generally works like this: Hackers find an opening into a title company’s or realty agent’s email account, track upcoming home purchases scheduled for settlements — the pricier the better — then assume the identity of the title agency person handling the transaction.

Days or sometimes weeks before the settlement, the scammer poses as the title or escrow agent whose email accounts they’ve hijacked and instructs the home buyer to wire the funds needed to close — often hundreds of thousands of dollars, sometimes far more — to the criminals’ own bank accounts, not the title or escrow company’s legitimate accounts. The criminals then withdraw the money and vanish.

Here it is in fine art:

The fraud is relatively simple. Criminals hack into an art dealer’s email account and monitor incoming and outgoing correspondence. When the gallery sends a PDF invoice to a client via email following a sale, the conversation is hijacked. Posing as the gallery, hackers send a duplicate, fraudulent invoice from the same gallery email address, with an accompanying message instructing the client to disregard the first invoice and instead wire payment to the account listed in the fraudulent document.

Once money has been transferred to the criminals’ account, the hackers move the money to avoid detection and then disappear. The same technique is used to intercept payments made by galleries to their artists and others. Because the hackers gain access to the gallery’s email contacts, the scam can spread quickly, with fraudulent emails appearing to come from known sources.

I’m sure it’s happening in other industries as well, probably even with business-to-business commerce.

Powered by WPeMatico

WannaCry Ransomware

Criminals go where the money is, and cybercriminals are no exception.

And right now, the money is in ransomware.

It’s a simple scam. Encrypt the victim’s hard drive, then extract a fee to decrypt it. The scammers can’t charge too much, because they want the victim to pay rather than give up on the data. But they can charge individuals a few hundred dollars, and they can charge institutions like hospitals a few thousand. Do it at scale, and it’s a profitable business.

And scale is how ransomware works. Computers are infected automatically, with viruses that spread over the internet. Payment is no more difficult than buying something online ­– and payable in untraceable bitcoin -­- with some ransomware makers offering tech support to those unsure of how to buy or transfer bitcoin. Customer service is important; people need to know they’ll get their files back once they pay.

And they want you to pay. If they’re lucky, they’ve encrypted your irreplaceable family photos, or the documents of a project you’ve been working on for weeks. Or maybe your company’s accounts receivable files or your hospital’s patient records. The more you need what they’ve stolen, the better.

The particular ransomware making headlines is called WannaCry, and it’s infected some pretty serious organizations.

What can you do about it? Your first line of defense is to diligently install every security update as soon as it becomes available, and to migrate to systems that vendors still support. Microsoft issued a security patch that protects against WannaCry months before the ransomware started infecting systems; it only works against computers that haven’t been patched. And many of the systems it infects are older computers, no longer normally supported by Microsoft –­ though it did belatedly release a patch for those older systems. I know it’s hard, but until companies are forced to maintain old systems, you’re much safer upgrading.

This is easier advice for individuals than for organizations. You and I can pretty easily migrate to a new operating system, but organizations sometimes have custom software that breaks when they change OS versions or install updates. Many of the organizations hit by WannaCry had outdated systems for exactly these reasons. But as expensive and time-consuming as updating might be, the risks of not doing so are increasing.

Your second line of defense is good antivirus software. Sometimes ransomware tricks you into encrypting your own hard drive by clicking on a file attachment that you thought was benign. Antivirus software can often catch your mistake and prevent the malicious software from running. This isn’t perfect, of course, but it’s an important part of any defense.

Your third line of defense is to diligently back up your files. There are systems that do this automatically for your hard drive. You can invest in one of those. Or you can store your important data in the cloud. If your irreplaceable family photos are in a backup drive in your house, then the ransomware has that much less hold on you. If your e-mail and documents are in the cloud, then you can just reinstall the operating system and bypass the ransomware entirely. I know storing data in the cloud has its own privacy risks, but they may be less than the risks of losing everything to ransomware.

That takes care of your computers and smartphones, but what about everything else? We’re deep into the age of the “Internet of things.”

There are now computers in your household appliances. There are computers in your cars and in the airplanes you travel on. Computers run our traffic lights and our power grids. These are all vulnerable to ransomware. The Murai botnet exploited a vulnerability in internet-enabled devices like DVRs and webcams to launch a denial-of-service attack against a critical internet name server; next time it could just as easily disable the devices and demand payment to turn them back on.

Re-enabling a webcam will be cheap; re-enabling your car will cost more. And you don’t want to know how vulnerable implanted medical devices are to these sorts of attacks.

Commercial solutions are coming, probably a convenient repackaging of the three lines of defense described above. But it’ll be yet another security surcharge you’ll be expected to pay because the computers and internet-of-things devices you buy are so insecure. Because there are currently no liabilities for lousy software and no regulations mandating secure software, the market rewards software that’s fast and cheap at the expense of good. Until that changes, ransomware will continue to be profitable line of criminal business.

This essay previously appeared in the New York Daily News.

Powered by WPeMatico