SSL and internet security news

Monthly Archive: August 2019

Attacking the Intel Secure Enclave

Interesting paper by Michael Schwarz, Samuel Weiser, Daniel Gruss. The upshot is that both Intel and AMD have assumed that trusted enclaves will run only trustworthy code. Of course, that’s not true. And there are no security mechanisms that can deal with malicious enclaves, because the designers couldn’t imagine that they would be necessary. The results are predictable.

The paper: “Practical Enclave Malware with Intel SGX.”

Abstract: Modern CPU architectures offer strong isolation guarantees towards user applications in the form of enclaves. For instance, Intel’s threat model for SGX assumes fully trusted enclaves, yet there is an ongoing debate on whether this threat model is realistic. In particular, it is unclear to what extent enclave malware could harm a system. In this work, we practically demonstrate the first enclave malware which fully and stealthily impersonates its host application. Together with poorly-deployed application isolation on personal computers, such malware can not only steal or encrypt documents for extortion, but also act on the user’s behalf, e.g., sending phishing emails or mounting denial-of-service attacks. Our SGX-ROP attack uses new TSX-based memory-disclosure primitive and a write-anything-anywhere primitive to construct a code-reuse attack from within an enclave which is then inadvertently executed by the host application. With SGX-ROP, we bypass ASLR, stack canaries, and address sanitizer. We demonstrate that instead of protecting users from harm, SGX currently poses a security threat, facilitating so-called super-malware with ready-to-hit exploits. With our results, we seek to demystify the enclave malware threat and lay solid ground for future research on and defense against enclave malware.

Powered by WPeMatico

AI Emotion-Detection Arms Race

Voice systems are increasingly using AI techniques to determine emotion. A new paper describes an AI-based countermeasure to mask emotion in spoken words.

Their method for masking emotion involves collecting speech, analyzing it, and extracting emotional features from the raw signal. Next, an AI program trains on this signal and replaces the emotional indicators in speech, flattening them. Finally, a voice synthesizer re-generates the normalized speech using the AIs outputs, which gets sent to the cloud. The researchers say that this method reduced emotional identification by 96 percent in an experiment, although speech recognition accuracy decreased, with a word error rate of 35 percent.

Academic paper.

Powered by WPeMatico

The Myth of Consumer-Grade Security

The Department of Justice wants access to encrypted consumer devices but promises not to infiltrate business products or affect critical infrastructure. Yet that’s not possible, because there is no longer any difference between those categories of devices. Consumer devices are critical infrastructure. They affect national security. And it would be foolish to weaken them, even at the request of law enforcement.

In his keynote address at the International Conference on Cybersecurity, Attorney General William Barr argued that companies should weaken encryption systems to gain access to consumer devices for criminal investigations. Barr repeated a common fallacy about a difference between military-grade encryption and consumer encryption: “After all, we are not talking about protecting the nation’s nuclear launch codes. Nor are we necessarily talking about the customized encryption used by large business enterprises to protect their operations. We are talking about consumer products and services such as messaging, smart phones, e-mail, and voice and data applications.”

The thing is, that distinction between military and consumer products largely doesn’t exist. All of those “consumer products” Barr wants access to are used by government officials — heads of state, legislators, judges, military commanders and everyone else — worldwide. They’re used by election officials, police at all levels, nuclear power plant operators, CEOs and human rights activists. They’re critical to national security as well as personal security.

This wasn’t true during much of the Cold War. Before the Internet revolution, military-grade electronics were different from consumer-grade. Military contracts drove innovation in many areas, and those sectors got the cool new stuff first. That started to change in the 1980s, when consumer electronics started to become the place where innovation happened. The military responded by creating a category of military hardware called COTS: commercial off-the-shelf technology. More consumer products became approved for military applications. Today, pretty much everything that doesn’t have to be hardened for battle is COTS and is the exact same product purchased by consumers. And a lot of battle-hardened technologies are the same computer hardware and software products as the commercial items, but in sturdier packaging.

Through the mid-1990s, there was a difference between military-grade encryption and consumer-grade encryption. Laws regulated encryption as a munition and limited what could legally be exported only to key lengths that were easily breakable. That changed with the rise of Internet commerce, because the needs of commercial applications more closely mirrored the needs of the military. Today, the predominant encryption algorithm for commercial applications — Advanced Encryption Standard (AES) — is approved by the National Security Agency (NSA) to secure information up to the level of Top Secret. The Department of Defense’s classified analogs of the Internet­ — Secret Internet Protocol Router Network (SIPRNet), Joint Worldwide Intelligence Communications System (JWICS) and probably others whose names aren’t yet public — use the same Internet protocols, software, and hardware that the rest of the world does, albeit with additional physical controls. And the NSA routinely assists in securing business and consumer systems, including helping Google defend itself from Chinese hackers in 2010.

Yes, there are some military applications that are different. The US nuclear system Barr mentions is one such example — and it uses ancient computers and 8-inch floppy drives. But for pretty much everything that doesn’t see active combat, it’s modern laptops, iPhones, the same Internet everyone else uses, and the same cloud services.

This is also true for corporate applications. Corporations rarely use customized encryption to protect their operations. They also use the same types of computers, networks, and cloud services that the government and consumers use. Customized security is both more expensive because it is unique, and less secure because it’s nonstandard and untested.

During the Cold War, the NSA had the dual mission of attacking Soviet computers and communications systems and defending domestic counterparts. It was possible to do both simultaneously only because the two systems were different at every level. Today, the entire world uses Internet protocols; iPhones and Android phones; and iMessage, WhatsApp and Signal to secure their chats. Consumer-grade encryption is the same as military-grade encryption, and consumer security is the same as national security.

Barr can’t weaken consumer systems without also weakening commercial, government, and military systems. There’s one world, one network, and one answer. As a matter of policy, the nation has to decide which takes precedence: offense or defense. If security is deliberately weakened, it will be weakened for everybody. And if security is strengthened, it is strengthened for everybody. It’s time to accept the fact that these systems are too critical to society to weaken. Everyone will be more secure with stronger encryption, even if it means the bad guys get to use that encryption as well.

This essay previously appeared on Lawfare.com.

Powered by WPeMatico

Friday Squid Blogging: Vulnerabilities in Squid Server

It’s always nice when I can combine squid and security:

Multiple versions of the Squid web proxy cache server built with Basic Authentication features are currently vulnerable to code execution and denial-of-service (DoS) attacks triggered by the exploitation of a heap buffer overflow security flaw.

The vulnerability present in Squid 4.0.23 through 4.7 is caused by incorrect buffer management which renders vulnerable installations to “a heap overflow and possible remote code execution attack when processing HTTP Authentication credentials.”

“When checking Basic Authentication with HttpHeader::getAuth, Squid uses a global buffer to store the decoded data,” says MITRE’s description of the vulnerability. “Squid does not check that the decoded length isn’t greater than the buffer, leading to a heap-based buffer overflow with user controlled data.”

The flaw was patched by the web proxy’s development team with the release of Squid 4.8 on July 9.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Powered by WPeMatico

License Plate “NULL”

There was a DefCon talk by someone with the vanity plate “NULL.” The California system assigned him every ticket with no license plate: $12,000.

Although the initial $12,000-worth of fines were removed, the private company that administers the database didn’t fix the issue and new NULL tickets are still showing up.

The unanswered question is: now that he has a way to get parking fines removed, can he park anywhere for free?

And this isn’t the first time this sort of thing has happened. Wired has a roundup of people whose license places read things like “NOPLATE,” “NO TAG,” and “XXXXXXX.”

Powered by WPeMatico

Modifying a Tesla to Become a Surveillance Platform

From DefCon:

At the Defcon hacker conference today, security researcher Truman Kain debuted what he calls the Surveillance Detection Scout. The DIY computer fits into the middle console of a Tesla Model S or Model 3, plugs into its dashboard USB port, and turns the car’s built-in cameras­ — the same dash and rearview cameras providing a 360-degree view used for Tesla’s Autopilot and Sentry features­ — into a system that spots, tracks, and stores license plates and faces over time. The tool uses open source image recognition software to automatically put an alert on the Tesla’s display and the user’s phone if it repeatedly sees the same license plate. When the car is parked, it can track nearby faces to see which ones repeatedly appear. Kain says the intent is to offer a warning that someone might be preparing to steal the car, tamper with it, or break into the driver’s nearby home.

Powered by WPeMatico

Surveillance as a Condition for Humanitarian Aid

Excellent op-ed on the growing trend to tie humanitarian aid to surveillance.

Despite the best intentions, the decision to deploy technology like biometrics is built on a number of unproven assumptions, such as, technology solutions can fix deeply embedded political problems. And that auditing for fraud requires entire populations to be tracked using their personal data. And that experimental technologies will work as planned in a chaotic conflict setting. And last, that the ethics of consent don’t apply for people who are starving.

Powered by WPeMatico