SSL and internet security news

google

Auto Added by WPeMatico

Storing Encrypted Photos in Google’s Cloud

New paper: “Encrypted Cloud Photo Storage Using Google Photos“:

Abstract: Cloud photo services are widely used for persistent, convenient, and often free photo storage, which is especially useful for mobile devices. As users store more and more photos in the cloud, significant privacy concerns arise because even a single compromise of a user’s credentials give attackers unfettered access to all of the user’s photos. We have created Easy Secure Photos (ESP) to enable users to protect their photos on cloud photo services such as Google Photos. ESP introduces a new client-side encryption architecture that includes a novel format-preserving image encryption algorithm, an encrypted thumbnail display mechanism, and a usable key management system. ESP encrypts image data such that the result is still a standard format image like JPEG that is compatible with cloud photo services. ESP efficiently generates and displays encrypted thumbnails for fast and easy browsing of photo galleries from trusted user devices. ESP’s key management makes it simple to authorize multiple user devices to view encrypted image content via a process similar to device pairing, but using the cloud photo service as a QR code communication channel. We have implemented ESP in a popular Android photos app for use with Google Photos and demonstrate that it is easy to use and provides encryption functionality transparently to users, maintains good interactive performance and image quality while providing strong privacy guarantees, and retains the sharing and storage benefits of Google Photos without any changes to the cloud service

Powered by WPeMatico

Google’s Project Zero Finds a Nation-State Zero-Day Operation

Google’s Project Zero discovered, and caused to be patched, eleven zero-day exploits against Chrome, Safari, Microsoft Windows, and iOS. This seems to have been exploited by “Western government operatives actively conducting a counterterrorism operation”:

The exploits, which went back to early 2020 and used never-before-seen techniques, were “watering hole” attacks that used infected websites to deliver malware to visitors. They caught the attention of cybersecurity experts thanks to their scale, sophistication, and speed.

[…]

It’s true that Project Zero does not formally attribute hacking to specific groups. But the Threat Analysis Group, which also worked on the project, does perform attribution. Google omitted many more details than just the name of the government behind the hacks, and through that information, the teams knew internally who the hacker and targets were. It is not clear whether Google gave advance notice to government officials that they would be publicizing and shutting down the method of attack.

Powered by WPeMatico

Exploiting Spectre Over the Internet

Google has demonstrated exploiting the Spectre CPU attack remotely over the web:

Today, we’re sharing proof-of-concept (PoC) code that confirms the practicality of Spectre exploits against JavaScript engines. We use Google Chrome to demonstrate our attack, but these issues are not specific to Chrome, and we expect that other modern browsers are similarly vulnerable to this exploitation vector. We have developed an interactive demonstration of the attack available at https://leaky.page/ ; the code and a more detailed writeup are published on Github here.

The demonstration website can leak data at a speed of 1kB/s when running on Chrome 88 on an Intel Skylake CPU. Note that the code will likely require minor modifications to apply to other CPUs or browser versions; however, in our tests the attack was successful on several other processors, including the Apple M1 ARM CPU, without any major changes.

Powered by WPeMatico

Android Apps Stealing Facebook Credentials

Google has removed 25 Android apps from its store because they steal Facebook credentials:

Before being taken down, the 25 apps were collectively downloaded more than 2.34 million times.

The malicious apps were developed by the same threat group and despite offering different features, under the hood, all the apps worked the same.

According to a report from French cyber-security firm Evina shared with ZDNet today, the apps posed as step counters, image editors, video editors, wallpaper apps, flashlight applications, file managers, and mobile games.

The apps offered a legitimate functionality, but they also contained malicious code. Evina researchers say the apps contained code that detected what app a user recently opened and had in the phone’s foreground.

Powered by WPeMatico

Malware in Google Apps

Interesting story of malware hidden in Google Apps. This particular campaign is tied to the government of Vietnam.

At a remote virtual version of its annual Security Analyst Summit, researchers from the Russian security firm Kaspersky today plan to present research about a hacking campaign they call PhantomLance, in which spies hid malware in the Play Store to target users in Vietnam, Bangladesh, Indonesia, and India. Unlike most of the shady apps found in Play Store malware, Kaspersky’s researchers say, PhantomLance’s hackers apparently smuggled in data-stealing apps with the aim of infecting only some hundreds of users; the spy campaign likely sent links to the malicious apps to those targets via phishing emails. “In this case, the attackers used Google Play as a trusted source,” says Kaspersky researcher Alexey Firsh. “You can deliver a link to this app, and the victim will trust it because it’s Google Play.”

[…]

The first hints of PhantomLance’s campaign focusing on Google Play came to light in July of last year. That’s when Russian security firm Dr. Web found a sample of spyware in Google’s app store that impersonated a downloader of graphic design software but in fact had the capability to steal contacts, call logs, and text messages from Android phones. Kaspersky’s researchers found a similar spyware app, impersonating a browser cache-cleaning tool called Browser Turbo, still active in Google Play in November of that year. (Google removed both malicious apps from Google Play after they were reported.) While the espionage capabilities of those apps was fairly basic, Firsh says that they both could have expanded. “What’s important is the ability to download new malicious payloads,” he says. “It could extend its features significantly.”

Kaspersky went on to find tens of other, similar spyware apps dating back to 2015 that Google had already removed from its Play Store, but which were still visible in archived mirrors of the app repository. Those apps appeared to have a Vietnamese focus, offering tools for finding nearby churches in Vietnam and Vietnamese-language news. In every case, Firsh says, the hackers had created a new account and even Github repositories for spoofed developers to make the apps appear legitimate and hide their tracks.

Powered by WPeMatico

Contact Tracing COVID-19 Infections via Smartphone Apps

Google and Apple have announced a joint project to create a privacy-preserving COVID-19 contact tracing app. (Details, such as we have them, are here.) It’s similar to the app being developed at MIT, and similar to others being described and developed elsewhere. It’s nice seeing the privacy protections; they’re well thought out.

I was going to write a long essay about the security and privacy concerns, but Ross Anderson beat me to it. (Note that some of his comments are UK-specific.)

First, it isn’t anonymous. Covid-19 is a notifiable disease so a doctor who diagnoses you must inform the public health authorities, and if they have the bandwidth they call you and ask who you’ve been in contact with. They then call your contacts in turn. It’s not about consent or anonymity, so much as being persuasive and having a good bedside manner.

I’m relaxed about doing all this under emergency public-health powers, since this will make it harder for intrusive systems to persist after the pandemic than if they have some privacy theater that can be used to argue that the whizzy new medi-panopticon is legal enough to be kept running.

Second, contact tracers have access to all sorts of other data such as public transport ticketing and credit-card records. This is how a contact tracer in Singapore is able to phone you and tell you that the taxi driver who took you yesterday from Orchard Road to Raffles has reported sick, so please put on a mask right now and go straight home. This must be controlled; Taiwan lets public-health staff access such material in emergencies only.

Third, you can’t wait for diagnoses. In the UK, you only get a test if you’re a VIP or if you get admitted to hospital. Even so the results take 1-3 days to come back. While the VIPs share their status on twitter or facebook, the other diagnosed patients are often too sick to operate their phones.

Fourth, the public health authorities need geographical data for purposes other than contact tracing – such as to tell the army where to build more field hospitals, and to plan shipments of scarce personal protective equipment. There are already apps that do symptom tracking but more would be better. So the UK app will ask for the first three characters of your postcode, which is about enough to locate which hospital you’d end up in.

Fifth, although the cryptographers – and now Google and Apple – are discussing more anonymous variants of the Singapore app, that’s not the problem. Anyone who’s worked on abuse will instantly realise that a voluntary app operated by anonymous actors is wide open to trolling. The performance art people will tie a phone to a dog and let it run around the park; the Russians will use the app to run service-denial attacks and spread panic; and little Johnny will self-report symptoms to get the whole school sent home.

I recommend reading his essay in full. Also worth reading are this EFF essay, and this ACLU white paper.

To me, the real problems aren’t around privacy and security. The efficacy of any app-based contact tracing is still unproven. A “contact” from the point of view of an app isn’t the same as an epidemiological contact. And the ratio of infections to contacts is high. We would have to deal with the false positives (being close to someone else, but separated by a partition or other barrier) and the false negatives (not being close to someone else, but contracting the disease through a mutually touched object). And without cheap, fast, and accurate testing, the information from any of these apps isn’t very useful. So I agree with Ross that this is primarily an exercise in that false syllogism: Something must be done. This is something. Therefore, we must do it. It’s techies proposing tech solutions to what is primarily a social problem.

EDITED TO ADD: Susan Landau on contact tracing apps and how they’re being oversold. And Farzad Mostashari, former coordinator for health IT at the Department of Health and Human Services, on contact tracing apps.

As long as 1) every contact does not result in an infection, and 2) a large percentage of people with the disease are asymptomatic and don’t realize they have it, I can’t see how this sort of app is valuable. If we had cheap, fast, and accurate testing for everyone on demand…maybe. But I still don’t think so.

Powered by WPeMatico

Hacking Voice Assistants with Ultrasonic Waves

I previously wrote about hacking voice assistants with lasers. Turns you can do much the same thing with ultrasonic waves:

Voice assistants — the demo targeted Siri, Google Assistant, and Bixby — are designed to respond when they detect the owner’s voice after noticing a trigger phrase such as ‘Ok, Google’.

Ultimately, commands are just sound waves, which other researchers have already shown can be emulated using ultrasonic waves which humans can’t hear, providing an attacker has a line of sight on the device and the distance is short.

What SurfingAttack adds to this is the ability to send the ultrasonic commands through a solid glass or wood table on which the smartphone was sitting using a circular piezoelectric disc connected to its underside.

Although the distance was only 43cm (17 inches), hiding the disc under a surface represents a more plausible, easier-to-conceal attack method than previous techniques.

Research paper. Demonstration video.

Powered by WPeMatico

Deep Learning to Find Malicious Email Attachments

Google presented its system of using deep-learning techniques to identify malicious email attachments:

At the RSA security conference in San Francisco on Tuesday, Google’s security and anti-abuse research lead Elie Bursztein will present findings on how the new deep-learning scanner for documents is faring against the 300 billion attachments it has to process each week. It’s challenging to tell the difference between legitimate documents in all their infinite variations and those that have specifically been manipulated to conceal something dangerous. Google says that 63 percent of the malicious documents it blocks each day are different than the ones its systems flagged the day before. But this is exactly the type of pattern-recognition problem where deep learning can be helpful.

[…]

The document analyzer looks for common red flags, probes files if they have components that may have been purposefully obfuscated, and does other checks like examining macros­ — the tool in Microsoft Word documents that chains commands together in a series and is often used in attacks. The volume of malicious documents that attackers send out varies widely day to day. Bursztein says that since its deployment, the document scanner has been particularly good at flagging suspicious documents sent in bursts by malicious botnets or through other mass distribution methods. He was also surprised to discover how effective the scanner is at analyzing Microsoft Excel documents, a complicated file format that can be difficult to assess.

This is the sort of thing that’s pretty well optimized for machine-learning techniques.

Powered by WPeMatico

Google Receives Geofence Warrants

Sometimes it’s hard to tell the corporate surveillance operations from the government ones:

Google reportedly has a database called Sensorvault in which it stores location data for millions of devices going back almost a decade.

The article is about geofence warrants, where the police go to companies like Google and ask for information about every device in a particular geographic area at a particular time. In 2013, we learned from Edward Snowden that the NSA does this worldwide. Its program is called CO-TRAVELLER. The NSA claims it stopped doing that in 2014 — probably just stopped doing it in the US — but why should it bother when the government can just get the data from Google.

Both the New York Times and EFF have written about Sensorvault.

Powered by WPeMatico