SSL and internet security news

microsoft

Auto Added by WPeMatico

More Russian Hacking

Two reports this week. The first is from Microsoft, which wrote:

As part of our investigation into this ongoing activity, we also detected information-stealing malware on a machine belonging to one of our customer support agents with access to basic account information for a small number of our customers. The actor used this information in some cases to launch highly-targeted attacks as part of their broader campaign.

The second is from the NSA, CISA, FBI, and the UK’s NCSC, which wrote that the GRU is continuing to conduct brute-force password guessing attacks around the world, and is in some cases successful. From the NSA press release:

Once valid credentials were discovered, the GTsSS combined them with various publicly known vulnerabilities to gain further access into victim networks. This, along with various techniques also detailed in the advisory, allowed the actors to evade defenses and collect and exfiltrate various information in the networks, including mailboxes.

News article.

Powered by WPeMatico

More on the Chinese Zero-Day Microsoft Exchange Hack

Nick Weaver has an excellent post on the Microsoft Exchange hack:

The investigative journalist Brian Krebs has produced a handy timeline of events and a few things stand out from the chronology. The attacker was first detected by one group on Jan. 5 and another on Jan. 6, and Microsoft acknowledged the problem immediately. During this time the attacker appeared to be relatively subtle, exploiting particular targets (although we generally lack insight into who was targeted). Microsoft determined on Feb. 18 that it would patch these vulnerabilities on the March 9th “Patch Tuesday” release of fixes.

Somehow, the threat actor either knew that the exploits would soon become worthless or simply guessed that they would. So, in late February, the attacker changed strategy. Instead of simply exploiting targeted Exchange servers, the attackers stepped up their pace considerably by targeting tens of thousands of servers to install the web shell, an exploit that allows attackers to have remote access to a system. Microsoft then released the patch with very little warning on Mar. 2, at which point the attacker simply sought to compromise almost every vulnerable Exchange server on the Internet. The result? Virtually every vulnerable mail server received the web shell as a backdoor for further exploitation, making the patch effectively useless against the Chinese attackers; almost all of the vulnerable systems were exploited before they were patched.

This is a rational strategy for any actor who doesn’t care about consequences. When a zero-day is confidential and undiscovered, the attacker tries to be careful, only using it on attackers of sufficient value. But if the attacker knows or has reason to believe their vulnerabilities may be patched, they will increase the pace of exploits and, once a patch is released, there is no reason to not try to exploit everything possible.

We know that Microsoft shares advance information about updates with some organizations. I have long believed that they give the NSA a few weeks’ notice to do basically what the Chinese did: use the exploit widely, because you don’t have to worry about losing the capability.

Estimates on the number of affected networks continues to rise. At least 30,000 in the US, and 100,000 worldwide. More?

And the vulnerabilities:

The Chinese actors were not using a single vulnerability but actually a sequence of four “zero-day” exploits. The first allowed an unauthorized user to basically tell the server “let me in, I’m the server” by tricking the server into contacting itself. After the unauthorized user gained entry, the hacker could use the second vulnerability, which used a malformed voicemail that, when interpreted by the server, allowed them to execute arbitrary commands. Two further vulnerabilities allow the attacker to write new files, which is a common primitive that attackers use to increase their access: An attacker uses a vulnerability to write a file and then uses the arbitrary command execution vulnerability to execute that file.

Using this access, the attackers could read anybody’s email or indeed take over the mail server completely. Critically, they would almost always do more, introducing a “web shell,” a program that would enable further remote exploitation even if the vulnerabilities are patched.

The details of that web shell matter. If it was sophisticated, it implies that the Chinese hackers were planning on installing it from the beginning of the operation. If it’s kind of slapdash, it implies a last-minute addition when they realized their exploit window was closing.

Now comes the criminal attacks. Any unpatched network is still vulnerable, and we know from history that lots of networks will remain vulnerable for a long time. Expect the ransomware gangs to weaponize this attack within days.

Powered by WPeMatico

Chinese Hackers Stole an NSA Windows Exploit in 2014

Check Point has evidence that (probably government affiliated) Chinese hackers stole and cloned an NSA Windows hacking tool years before (probably government affiliated) Russian hackers stole and then published the same tool. Here’s the timeline:

The timeline basically seems to be, according to Check Point:

  • 2013: NSA’s Equation Group developed a set of exploits including one called EpMe that elevates one’s privileges on a vulnerable Windows system to system-administrator level, granting full control. This allows someone with a foothold on a machine to commandeer the whole box.
  • 2014-2015: China’s hacking team code-named APT31, aka Zirconium, developed Jian by, one way or another, cloning EpMe.
  • Early 2017: The Equation Group’s tools were teased and then leaked online by a team calling itself the Shadow Brokers. Around that time, Microsoft cancelled its February Patch Tuesday, identified the vulnerability exploited by EpMe (CVE-2017-0005), and fixed it in a bumper March update. Interestingly enough, Lockheed Martin was credited as alerting Microsoft to the flaw, suggesting it was perhaps used against an American target.
  • Mid 2017: Microsoft quietly fixed the vulnerability exploited by the leaked EpMo exploit.

Lots of news articles about this.

Powered by WPeMatico

Twelve-Year-Old Vulnerability Found in Windows Defender

Researchers found, and Microsoft has patched, a vulnerability in Windows Defender that has been around for twelve years. There is no evidence that anyone has used the vulnerability during that time.

The flaw, discovered by researchers at the security firm SentinelOne, showed up in a driver that Windows Defender — renamed Microsoft Defender last year — uses to delete the invasive files and infrastructure that malware can create. When the driver removes a malicious file, it replaces it with a new, benign one as a sort of placeholder during remediation. But the researchers discovered that the system doesn’t specifically verify that new file. As a result, an attacker could insert strategic system links that direct the driver to overwrite the wrong file or even run malicious code.

It isn’t unusual that vulnerabilities lie around for this long. They can’t be fixed until someone finds them, and people aren’t always looking.

Powered by WPeMatico

Vulnerability Finding Using Machine Learning

Microsoft is training a machine-learning system to find software bugs:

At Microsoft, 47,000 developers generate nearly 30 thousand bugs a month. These items get stored across over 100 AzureDevOps and GitHub repositories. To better label and prioritize bugs at that scale, we couldn’t just apply more people to the problem. However, large volumes of semi-curated data are perfect for machine learning. Since 2001 Microsoft has collected 13 million work items and bugs. We used that data to develop a process and machine learning model that correctly distinguishes between security and non-security bugs 99 percent of the time and accurately identifies the critical, high priority security bugs, 97 percent of the time.

News article.

I wrote about this in 2018:

The problem of finding software vulnerabilities seems well-suited for ML systems. Going through code line by line is just the sort of tedious problem that computers excel at, if we can only teach them what a vulnerability looks like. There are challenges with that, of course, but there is already a healthy amount of academic literature on the topic — and research is continuing. There’s every reason to expect ML systems to get better at this as time goes on, and some reason to expect them to eventually become very good at it.

Finding vulnerabilities can benefit both attackers and defenders, but it’s not a fair fight. When an attacker’s ML system finds a vulnerability in software, the attacker can use it to compromise systems. When a defender’s ML system finds the same vulnerability, he or she can try to patch the system or program network defenses to watch for and block code that tries to exploit it.

But when the same system is in the hands of a software developer who uses it to find the vulnerability before the software is ever released, the developer fixes it so it can never be used in the first place. The ML system will probably be part of his or her software design tools and will automatically find and fix vulnerabilities while the code is still in development.

Fast-forward a decade or so into the future. We might say to each other, “Remember those years when software vulnerabilities were a thing, before ML vulnerability finders were built into every compiler and fixed them before the software was ever released? Wow, those were crazy years.” Not only is this future possible, but I would bet on it.

Getting from here to there will be a dangerous ride, though. Those vulnerability finders will first be unleashed on existing software, giving attackers hundreds if not thousands of vulnerabilities to exploit in real-world attacks. Sure, defenders can use the same systems, but many of today’s Internet of Things (IoT) systems have no engineering teams to write patches and no ability to download and install patches. The result will be hundreds of vulnerabilities that attackers can find and use.

Powered by WPeMatico

Microsoft Buys Corp.com

A few months ago, Brian Krebs told the story of the domain corp.com, and how it is basically a security nightmare:

At issue is a problem known as “namespace collision,” a situation where domain names intended to be used exclusively on an internal company network end up overlapping with domains that can resolve normally on the open Internet.

Windows computers on an internal corporate network validate other things on that network using a Microsoft innovation called Active Directory, which is the umbrella term for a broad range of identity-related services in Windows environments. A core part of the way these things find each other involves a Windows feature called “DNS name devolution,” which is a kind of network shorthand that makes it easier to find other computers or servers without having to specify a full, legitimate domain name for those resources.

For instance, if a company runs an internal network with the name internalnetwork.example.com, and an employee on that network wishes to access a shared drive called “drive1,” there’s no need to type “drive1.internalnetwork.example.com” into Windows Explorer; typing “\drive1” alone will suffice, and Windows takes care of the rest.

But things can get far trickier with an internal Windows domain that does not map back to a second-level domain the organization actually owns and controls. And unfortunately, in early versions of Windows that supported Active Directory — Windows 2000 Server, for example — the default or example Active Directory path was given as “corp,” and many companies apparently adopted this setting without modifying it to include a domain they controlled.

Compounding things further, some companies then went on to build (and/or assimilate) vast networks of networks on top of this erroneous setting.

Now, none of this was much of a security concern back in the day when it was impractical for employees to lug their bulky desktop computers and monitors outside of the corporate network. But what happens when an employee working at a company with an Active Directory network path called “corp” takes a company laptop to the local Starbucks?

Chances are good that at least some resources on the employee’s laptop will still try to access that internal “corp” domain. And because of the way DNS name devolution works on Windows, that company laptop online via the Starbucks wireless connection is likely to then seek those same resources at “corp.com.”

In practical terms, this means that whoever controls corp.com can passively intercept private communications from hundreds of thousands of computers that end up being taken outside of a corporate environment which uses this “corp” designation for its Active Directory domain.

Microsoft just bought it, so it wouldn’t fall into the hands of any bad actors:

In a written statement, Microsoft said it acquired the domain to protect its customers.

“To help in keeping systems protected we encourage customers to practice safe security habits when planning for internal domain and network names,” the statement reads. “We released a security advisory in June of 2009 and a security update that helps keep customers safe. In our ongoing commitment to customer security, we also acquired the Corp.com domain.”

Powered by WPeMatico

Emotat Malware Causes Physical Damage

Microsoft is reporting that an Emotat malware infection shut down a network by causing computers to overheat and then crash.

The Emotet payload was delivered and executed on the systems of Fabrikam — a fake name Microsoft gave the victim in their case study — five days after the employee’s user credentials were exfiltrated to the attacker’s command and control (C&C) server.

Before this, the threat actors used the stolen credentials to deliver phishing emails to other Fabrikam employees, as well as to their external contacts, with more and more systems getting infected and downloading additional malware payloads.

The malware further spread through the network without raising any red flags by stealing admin account credentials authenticating itself on new systems, later used as stepping stones to compromise other devices.

Within 8 days since that first booby-trapped attachment was opened, Fabrikam’s entire network was brought to its knees despite the IT department’s efforts, with PCs overheating, freezing, and rebooting because of blue screens, and Internet connections slowing down to a crawl because of Emotet devouring all the bandwidth.

The infection mechanism was one employee opening a malicious attachment to a phishing email. I can’t find any information on what kind of attachment.

Powered by WPeMatico

Critical Windows Vulnerability Discovered by NSA

Yesterday’s Microsoft Windows patches included a fix for a critical vulnerability in the system’s crypto library.

A spoofing vulnerability exists in the way Windows CryptoAPI (Crypt32.dll) validates Elliptic Curve Cryptography (ECC) certificates.

An attacker could exploit the vulnerability by using a spoofed code-signing certificate to sign a malicious executable, making it appear the file was from a trusted, legitimate source. The user would have no way of knowing the file was malicious, because the digital signature would appear to be from a trusted provider.

A successful exploit could also allow the attacker to conduct man-in-the-middle attacks and decrypt confidential information on user connections to the affected software.

That’s really bad, and you should all patch your system right now, before you finish reading this blog post.

This is a zero-day vulnerability, meaning that it was not detected in the wild before the patch was released. It was discovered by security researchers. Interestingly, it was discovered by NSA security researchers, and the NSA security advisory gives a lot more information about it than the Microsoft advisory does.

Exploitation of the vulnerability allows attackers to defeat trusted network connections and deliver executable code while appearing as legitimately trusted entities. Examples where validation of trust may be impacted include:

  • HTTPS connections
  • Signed files and emails
  • Signed executable code launched as user-mode processes

The vulnerability places Windows endpoints at risk to a broad range of exploitation vectors. NSA assesses the vulnerability to be severe and that sophisticated cyber actors will understand the underlying flaw very quickly and, if exploited, would render the previously mentioned platforms as fundamentally vulnerable.The consequences of not patching the vulnerability are severe and widespread. Remote exploitation tools will likely be made quickly and widely available.Rapid adoption of the patch is the only known mitigation at this time and should be the primary focus for all network owners.

Early yesterday morning, NSA’s Cybersecurity Directorate head Anne Neuberger hosted a media call where she talked about the vulnerability and — to my shock — took questions from the attendees. According to her, the NSA discovered this vulnerability as part of its security research. (If it found it in some other nation’s cyberweapons stash — my personal favorite theory — she declined to say.) She did not answer when asked how long ago the NSA discovered the vulnerability. She said that this is not the first time the NSA sent Microsoft a vulnerability to fix, but it was the first time it has publicly taken credit for the discovery. The reason is that the NSA is trying to rebuild trust with the security community, and this disclosure is a result of its new initiative to share findings more quickly and more often.

Barring any other information, I would take the NSA at its word here. So, good for it.

And — seriously — patch your systems now: Windows 10 and Windows Server 2016/2019. Assume that this vulnerability has already been weaponized, probably by criminals and certainly by major governments. Even assume that the NSA is using this vulnerability — why wouldn’t it?

Ars Technica article. Wired article. CERT advisory.

EDITED TO ADD: Washington Post article.

Powered by WPeMatico