SSL and internet security news

cellphones

Auto Added by WPeMatico

Fingerprinting iPhones

This clever attack allows someone to uniquely identify a phone when you visit a website, based on data from the accelerometer, gyroscope, and magnetometer sensors.

We have developed a new type of fingerprinting attack, the calibration fingerprinting attack. Our attack uses data gathered from the accelerometer, gyroscope and magnetometer sensors found in smartphones to construct a globally unique fingerprint. Overall, our attack has the following advantages:

  • The attack can be launched by any website you visit or any app you use on a vulnerable device without requiring any explicit confirmation or consent from you.
  • The attack takes less than one second to generate a fingerprint.
  • The attack can generate a globally unique fingerprint for iOS devices.
  • The calibration fingerprint never changes, even after a factory reset.
  • The attack provides an effective means to track you as you browse across the web and move between apps on your phone.

* Following our disclosure, Apple has patched this vulnerability in iOS 12.2.

Research paper.

Powered by WPeMatico

How Technology and Politics Are Changing Spycraft

Interesting article about how traditional nation-based spycraft is changing. Basically, the Internet makes it increasingly possible to generate a good cover story; cell phone and other electronic surveillance techniques make tracking people easier; and machine learning will make all of this automatic. Meanwhile, Western countries have new laws and norms that put them at a disadvantage over other countries. And finally, much of this has gone corporate.

Powered by WPeMatico

Recovering Smartphone Typing from Microphone Sounds

Yet another side-channel attack on smartphones: “Hearing your touch: A new acoustic side channel on smartphones,” by Ilia Shumailov, Laurent Simon, Jeff Yan, and Ross Anderson.

Abstract: We present the first acoustic side-channel attack that recovers what users type on the virtual keyboard of their touch-screen smartphone or tablet. When a user taps the screen with a finger, the tap generates a sound wave that propagates on the screen surface and in the air. We found the device’s microphone(s) can recover this wave and “hear” the finger’s touch, and the wave’s distortions are characteristic of the tap’s location on the screen. Hence, by recording audio through the built-in microphone(s), a malicious app can infer text as the user enters it on their device. We evaluate the effectiveness of the attack with 45 participants in a real-world environment on an Android tablet and an Android smartphone. For the tablet, we recover 61% of 200 4-digit PIN-codes within 20 attempts, even if the model is not trained with the victim’s data. For the smartphone, we recover 9 words of size 7-13 letters with 50 attempts in a common side-channel attack benchmark. Our results suggest that it not always sufficient to rely on isolation mechanisms such as TrustZone to protect user input. We propose and discuss hardware, operating-system and application-level mechanisms to block this attack more effectively. Mobile devices may need a richer capability model, a more user-friendly notification system for sensor usage and a more thorough evaluation of the information leaked by the underlying hardware.

Blog post.

Powered by WPeMatico

Security Vulnerabilities in Cell Phone Systems

Good essay on the inherent vulnerabilities in the cell phone standards and the market barriers to fixing them.

So far, industry and policymakers have largely dragged their feet when it comes to blocking cell-site simulators and SS7 attacks. Senator Ron Wyden, one of the few lawmakers vocal about this issue, sent a letter in August encouraging the Department of Justice to “be forthright with federal courts about the disruptive nature of cell-site simulators.” No response has ever been published.

The lack of action could be because it is a big task — there are hundreds of companies and international bodies involved in the cellular network. The other reason could be that intelligence and law enforcement agencies have a vested interest in exploiting these same vulnerabilities. But law enforcement has other effective tools that are unavailable to criminals and spies. For example, the police can work directly with phone companies, serving warrants and Title III wiretap orders. In the end, eliminating these vulnerabilities is just as valuable for law enforcement as it is for everyone else.

As it stands, there is no government agency that has the power, funding and mission to fix the problems. Large companies such as AT&T, Verizon, Google and Apple have not been public about their efforts, if any exist.

Powered by WPeMatico

Using a Smartphone’s Microphone and Speakers to Eavesdrop on Passwords

It’s amazing that this is even possible: “SonarSnoop: Active Acoustic Side-Channel Attacks“:

Abstract: We report the first active acoustic side-channel attack. Speakers are used to emit human inaudible acoustic signals and the echo is recorded via microphones, turning the acoustic system of a smart phone into a sonar system. The echo signal can be used to profile user interaction with the device. For example, a victim’s finger movements can be inferred to steal Android phone unlock patterns. In our empirical study, the number of candidate unlock patterns that an attacker must try to authenticate herself to a Samsung S4 Android phone can be reduced by up to 70% using this novel acoustic side-channel. Our approach can be easily applied to other application scenarios and device types. Overall, our work highlights a new family of security threats.

News article.

Powered by WPeMatico

Defeating the iPhone Restricted Mode

Recently, Apple introduced restricted mode to protect iPhones from attacks by companies like Cellebrite and Greyshift, which allow attackers to recover information from a phone without the password or fingerprint. Elcomsoft just announced that it can easily bypass it.

There is an important lesson in this: security is hard. Apple Computer has one of the best security teams on the planet. This feature was not tossed out in a day; it was designed and implemented with a lot of thought and care. If this team could make a mistake like this, imagine how bad a security feature is when implemented by a team without this kind of expertise.

This is the reason actual cryptographers and security engineers are very skeptical when a random company announces that their product is “secure.” We know that they don’t have the requisite security expertise to design and implement security properly. We know they didn’t take the time and care. We know that their engineers think they understand security, and designed to a level that they couldn’t break.

Getting security right is hard for the best teams on the world. It’s impossible for average teams.

Powered by WPeMatico

Accessing Cell Phone Location Information

The New York Times is reporting about a company called Securus Technologies that gives police the ability to track cell phone locations without a warrant:

The service can find the whereabouts of almost any cellphone in the country within seconds. It does this by going through a system typically used by marketers and other companies to get location data from major cellphone carriers, including AT&T, Sprint, T-Mobile and Verizon, documents show.

Another article.

Boing Boing post.

Powered by WPeMatico

Russia is Banning Telegram

Russia has banned the secure messaging app Telegram. It’s making an absolute mess of the ban — blocking 16 million IP addresses, many belonging to the Amazon and Google clouds — and it’s not even clear that it’s working. But, more importantly, I’m not convinced Telegram is secure in the first place.

Such a weird story. If you want secure messaging, use Signal. If you’re concerned that having Signal on your phone will itself arouse suspicion, use WhatsApp.

Powered by WPeMatico

GreyKey iPhone Unlocker

Some details about the iPhone unlocker from the US company Greyshift, with photos.

Little is known about Grayshift or its sales model at this point. We don’t know whether sales are limited to US law enforcement, or if it is also selling in other parts of the world. Regardless of that, it’s highly likely that these devices will ultimately end up in the hands of agents of an oppressive regime, whether directly from Grayshift or indirectly through the black market.

It’s also entirely possible, based on the history of the IP-Box, that Grayshift devices will end up being available to anyone who wants them and can find a way to purchase them, perhaps by being reverse-engineered and reproduced by an enterprising hacker, then sold for a couple hundred bucks on eBay.

Forbes originally wrote about this, and I blogged that article.

Powered by WPeMatico