SSL and internet security news

cybersecurity

Auto Added by WPeMatico

A “Department of Cybersecurity”

Presidential candidate John Delaney has announced a plan to create a Department of Cybersecurity.

I have long been in favor of a new federal agency to deal with Internet — and especially Internet of Things — security. The devil is in the details, of course, and it’s really easy to get this wrong. In Click Here to Kill Everybody, I outline a strawman proposal; I call it the “National Cyber Office” and model it on the Office of the Director of National Intelligence. But regardless of what you think of this idea, I’m glad that at least someone is talking about it.

Slashdot thread. News story.

EDITED TO ADD: Yes, this post is perilously close to presidential politics. Any comment that opines on the qualifications of this, or any other, presidential candidate will be deleted.

Powered by WPeMatico

More on the Triton Malware

FireEye is releasing much more information about the Triton malware that attacks critical infrastructure. It has been discovered in more places.

This is also a good — but older — article on Triton. We don’t know who wrote it. Initial speculation was Iran; more recent speculation is Russia. Both are still speculations.

Fireeye report. BoingBoing post.

Powered by WPeMatico

An Argument that Cybersecurity Is Basically Okay

Andrew Odlyzko’s new essay is worth reading — “Cybersecurity is not very important“:

Abstract: There is a rising tide of security breaches. There is an even faster rising tide of hysteria over the ostensible reason for these breaches, namely the deficient state of our information infrastructure. Yet the world is doing remarkably well overall, and has not suffered any of the oft-threatened giant digital catastrophes. This continuing general progress of society suggests that cyber security is not very important. Adaptations to cyberspace of techniques that worked to protect the traditional physical world have been the main means of mitigating the problems that occurred. This “chewing gum and baling wire”approach is likely to continue to be the basic method of handling problems that arise, and to provide adequate levels of security.

I am reminded of these two essays. And, as I said in the blog post about those two essays:

This is true, and is something I worry will change in a world of physically capable computers. Automation, autonomy, and physical agency will make computer security a matter of life and death, and not just a matter of data.

Powered by WPeMatico

Cybersecurity Insurance Not Paying for NotPetya Losses

This will complicate things:

To complicate matters, having cyber insurance might not cover everyone’s losses. Zurich American Insurance Company refused to pay out a $100 million claim from Mondelez, saying that since the U.S. and other governments labeled the NotPetya attack as an action by the Russian military their claim was excluded under the “hostile or warlike action in time of peace or war” exemption.

I get that $100 million is real money, but the insurance industry needs to figure out how to properly insure commercial networks against this sort of thing.

Powered by WPeMatico

Cybersecurity for the Public Interest

The Crypto Wars have been waging off-and-on for a quarter-century. On one side is law enforcement, which wants to be able to break encryption, to access devices and communications of terrorists and criminals. On the other are almost every cryptographer and computer security expert, repeatedly explaining that there’s no way to provide this capability without also weakening the security of every user of those devices and communications systems.

It’s an impassioned debate, acrimonious at times, but there are real technologies that can be brought to bear on the problem: key-escrow technologies, code obfuscation technologies, and backdoors with different properties. Pervasive surveillance capitalism — ­as practiced by the Internet companies that are already spying on everyone­ — matters. So does society’s underlying security needs. There is a security benefit to giving access to law enforcement, even though it would inevitably and invariably also give that access to others. However, there is also a security benefit of having these systems protected from all attackers, including law enforcement. These benefits are mutually exclusive. Which is more important, and to what degree?

The problem is that almost no policymakers are discussing this policy issue from a technologically informed perspective, and very few technologists truly understand the policy contours of the debate. The result is both sides consistently talking past each other, and policy proposals — ­that occasionally become law­ — that are technological disasters.

This isn’t sustainable, either for this issue or any of the other policy issues surrounding Internet security. We need policymakers who understand technology, but we also need cybersecurity technologists who understand­ — and are involved in — ­policy. We need public-interest technologists.

Let’s pause at that term. The Ford Foundation defines public-interest technologists as “technology practitioners who focus on social justice, the common good, and/or the public interest.” A group of academics recently wrote that public-interest technologists are people who “study the application of technology expertise to advance the public interest, generate public benefits, or promote the public good.” Tim Berners-Lee has called them “philosophical engineers.” I think of public-interest technologists as people who combine their technological expertise with a public-interest focus: by working on tech policy, by working on a tech project with a public benefit, or by working as a traditional technologist for an organization with a public benefit. Maybe it’s not the best term­ — and I know not everyone likes it­ — but it’s a decent umbrella term that can encompass all these roles.

We need public-interest technologists in policy discussions. We need them on congressional staff, in federal agencies, at non-governmental organizations (NGOs), in academia, inside companies, and as part of the press. In our field, we need them to get involved in not only the Crypto Wars, but everywhere cybersecurity and policy touch each other: the vulnerability equities debate, election security, cryptocurrency policy, Internet of Things safety and security, big data, algorithmic fairness, adversarial machine learning, critical infrastructure, and national security. When you broaden the definition of Internet security, many additional areas fall within the intersection of cybersecurity and policy. Our particular expertise and way of looking at the world is critical for understanding a great many technological issues, such as net neutrality and the regulation of critical infrastructure. I wouldn’t want to formulate public policy about artificial intelligence and robotics without a security technologist involved.

Public-interest technology isn’t new. Many organizations are working in this area, from older organizations like EFF and EPIC to newer ones like Verified Voting and Access Now. Many academic classes and programs combine technology and public policy. My cybersecurity policy class at the Harvard Kennedy School is just one example. Media startups like The Markup are doing technology-driven journalism. There are even programs and initiatives related to public-interest technology inside for-profit corporations.

This might all seem like a lot, but it’s really not. There aren’t enough people doing it, there aren’t enough people who know it needs to be done, and there aren’t enough places to do it. We need to build a world where there is a viable career path for public-interest technologists.

There are many barriers. There’s a report titled A Pivotal Moment that includes this quote: “While we cite individual instances of visionary leadership and successful deployment of technology skill for the public interest, there was a consensus that a stubborn cycle of inadequate supply, misarticulated demand, and an inefficient marketplace stymie progress.”

That quote speaks to the three places for intervention. One: the supply side. There just isn’t enough talent to meet the eventual demand. This is especially acute in cybersecurity, which has a talent problem across the field. Public-interest technologists are a diverse and multidisciplinary group of people. Their backgrounds come from technology, policy, and law. We also need to foster diversity within public-interest technology; the populations using the technology must be represented in the groups that shape the technology. We need a variety of ways for people to engage in this sphere: ways people can do it on the side, for a couple of years between more traditional technology jobs, or as a full-time rewarding career. We need public-interest technology to be part of every core computer-science curriculum, with “clinics” at universities where students can get a taste of public-interest work. We need technology companies to give people sabbaticals to do this work, and then value what they’ve learned and done.

Two: the demand side. This is our biggest problem right now; not enough organizations understand that they need technologists doing public-interest work. We need jobs to be funded across a wide variety of NGOs. We need staff positions throughout the government: executive, legislative, and judiciary branches. President Obama’s US Digital Service should be expanded and replicated; so should Code for America. We need more press organizations that perform this kind of work.

Three: the marketplace. We need job boards, conferences, and skills exchanges­ — places where people on the supply side can learn about the demand.

Major foundations are starting to provide funding in this space: the Ford and MacArthur Foundations in particular, but others as well.

This problem in our field has an interesting parallel with the field of public-interest law. In the 1960s, there was no such thing as public-interest law. The field was deliberately created, funded by organizations like the Ford Foundation. They financed legal aid clinics at universities, so students could learn housing, discrimination, or immigration law. They funded fellowships at organizations like the ACLU and the NAACP. They created a world where public-interest law is valued, where all the partners at major law firms are expected to have done some public-interest work. Today, when the ACLU advertises for a staff attorney, paying one-third to one-tenth normal salary, it gets hundreds of applicants. Today, 20% of Harvard Law School graduates go into public-interest law, and the school has soul-searching seminars because that percentage is so low. Meanwhile, the percentage of computer-science graduates going into public-interest work is basically zero.

This is bigger than computer security. Technology now permeates society in a way it didn’t just a couple of decades ago, and governments move too slowly to take this into account. That means technologists now are relevant to all sorts of areas that they had no traditional connection to: climate change, food safety, future of work, public health, bioengineering.

More generally, technologists need to understand the policy ramifications of their work. There’s a pervasive myth in Silicon Valley that technology is politically neutral. It’s not, and I hope most people reading this today knows that. We built a world where programmers felt they had an inherent right to code the world as they saw fit. We were allowed to do this because, until recently, it didn’t matter. Now, too many issues are being decided in an unregulated capitalist environment where significant social costs are too often not taken into account.

This is where the core issues of society lie. The defining political question of the 20th century was: “What should be governed by the state, and what should be governed by the market?” This defined the difference between East and West, and the difference between political parties within countries. The defining political question of the first half of the 21st century is: “How much of our lives should be governed by technology, and under what terms?” In the last century, economists drove public policy. In this century, it will be technologists.

The future is coming faster than our current set of policy tools can deal with. The only way to fix this is to develop a new set of policy tools with the help of technologists. We need to be in all aspects of public-interest work, from informing policy to creating tools all building the future. The world needs all of our help.

This essay previously appeared in the January/February issue of IEEE Security & Privacy.

Together with the Ford Foundation, I am hosting a one-day mini-track on public-interest technologists at the RSA Conference this week on Thursday. We’ve had some press coverage.

Powered by WPeMatico

Cyberinsurance and Acts of War

I had not heard about this case before. Zurich Insurance has refused to pay Mondelez International’s claim of $100 million in damages from NotPetya. It claims it is an act of war and therefor not covered. Mondelez is suing.

Those turning to cyber insurance to manage their exposure presently face significant uncertainties about its promise. First, the scope of cyber risks vastly exceeds available coverage, as cyber perils cut across most areas of commercial insurance in an unprecedented manner: direct losses to policyholders and third-party claims (clients, customers, etc.); financial, physical and IP damages; business interruption, and so on. Yet no cyber insurance policies cover this entire spectrum. Second, the scope of cyber-risk coverage under existing policies, whether traditional general liability or property policies or cyber-specific policies, is rarely comprehensive (to cover all possible cyber perils) and often unclear (i.e., it does not explicitly pertain to all manifestations of cyber perils, or it explicitly excludes some).

But it is in the public interest for Zurich and its peers to expand their role in managing cyber risk. In its ideal state, a mature cyber insurance market could go beyond simply absorbing some of the damage of cyberattacks and play a more fundamental role in engineering and managing cyber risk. It would allow analysis of data across industries to understand risk factors and develop common metrics and scalable solutions. It would allow researchers to pinpoint sources of aggregation risk, such as weak spots in widely relied-upon software and hardware platforms and services. Through its financial levers, the insurance industry can turn these insights into action, shaping private-sector behavior and promoting best practices internationally. Such systematic efforts to improve and incentivize cyber-risk management would redress the conditions that made NotPetya possible in the first place. This, in turn, would diminish the onus on governments to retaliate against attacks.

Powered by WPeMatico

Hacking the GCHQ Backdoor

Last week, I evaluated the security of a recent GCHQ backdoor proposal for communications systems. Furthering the debate, Nate Cardozo and Seth Schoen of EFF explain how this sort of backdoor can be detected:

In fact, we think when the ghost feature is active­ — silently inserting a secret eavesdropping member into an otherwise end-to-end encrypted conversation in the manner described by the GCHQ authors­ — it could be detected (by the target as well as certain third parties) with at least four different techniques: binary reverse engineering, cryptographic side channels, network-traffic analysis, and crash log analysis. Further, crash log analysis could lead unrelated third parties to find evidence of the ghost in use, and it’s even possible that binary reverse engineering could lead researchers to find ways to disable the ghost capability on the client side. It should be obvious that none of these possibilities are desirable for law enforcement or society as a whole. And while we’ve theorized some types of mitigations that might make the ghost less detectable by particular techniques, they could also impose considerable costs to the network when deployed at the necessary scale, as well as creating new potential security risks or detection methods.

Other critiques of the system were written by Susan Landau and Matthew Green.

Powered by WPeMatico