SSL and internet security news


Auto Added by WPeMatico

GCHQ on Quantum Key Distribution

The UK’s GCHQ delivers a brutally blunt assessment of quantum key distribution:

QKD protocols address only the problem of agreeing keys for encrypting data. Ubiquitous on-demand modern services (such as verifying identities and data integrity, establishing network sessions, providing access control, and automatic software updates) rely more on authentication and integrity mechanisms — such as digital signatures — than on encryption.

QKD technology cannot replace the flexible authentication mechanisms provided by contemporary public key signatures. QKD also seems unsuitable for some of the grand future challenges such as securing the Internet of Things (IoT), big data, social media, or cloud applications.

I agree with them. It’s a clever idea, but basically useless in practice. I don’t even think it’s anything more than a niche solution in a world where quantum computers have broken our traditional public-key algorithms.

Read the whole thing. It’s short.

Powered by WPeMatico

Quantum Tokens for Digital Signatures

This paper wins “best abstract” award: “Quantum Tokens for Digital Signatures,” by Shalev Ben David and Or Sattath:

Abstract: The fisherman caught a quantum fish. “Fisherman, please let me go,” begged the fish, “and I will grant you three wishes.” The fisherman agreed. The fish gave the fisherman a quantum computer, three quantum signing tokens and his classical public key.

The fish explained: “to sign your three wishes, use the tokenized signature scheme on this quantum computer, then show your valid signature to the king, who owes me a favor.”

The fisherman used one of the signing tokens to sign the document “give me a castle!” and rushed to the palace. The king executed the classical verification algorithm using the fish’s public key, and since it was valid, the king complied.

The fisherman’s wife wanted to sign ten wishes using their two remaining signing tokens. The fisherman did not want to cheat, and secretly sailed to meet the fish. “Fish, my wife wants to sign ten more wishes.”

But the fish was not worried: “I have learned quantum cryptography following the previous story (The Fisherman and His Wife by the brothers Grimm). The quantum tokens are consumed during the signing. Your polynomial wife cannot even sign four wishes using the three signing tokens I gave you.”

“How does it work?” wondered the fisherman.

“Have you heard of quantum money? These are quantum states which can be easily verified but are hard to copy. This tokenized quantum signature scheme extends Aaronson and Christiano’s quantum money scheme, which is why the signing tokens cannot be copied.”

“Does your scheme have additional fancy properties?” the fisherman asked.

“Yes, the scheme has other security guarantees: revocability, testability and everlasting security. Furthermore, if you’re at the sea and your quantum phone has only classical reception, you can use this scheme to transfer the value of the quantum money to shore,” said the fish, and swam his way.

Powered by WPeMatico