SSL and internet security news

robotics

Auto Added by WPeMatico

Military Robots as a Nature Analog

This very interesting essay looks at the future of military robotics and finds many analogs in nature:

Imagine a low-cost drone with the range of a Canada goose, a bird that can cover 1,500 miles in a single day at an average speed of 60 miles per hour. Planet Earth profiled a single flock of snow geese, birds that make similar marathon journeys, albeit slower. The flock of six-pound snow geese was so large it formed a sky-darkening cloud 12 miles long. How would an aircraft carrier battlegroup respond to an attack from millions of aerial kamikaze explosive drones that, like geese, can fly hundreds of miles? A single aircraft carrier costs billions of dollars, and the United States relies heavily on its ten aircraft carrier strike groups to project power around the globe. But as military robots match more capabilities found in nature, some of the major systems and strategies upon which U.S. national security currently relies — perhaps even the fearsome aircraft carrier strike group — might experience the same sort of technological disruption that the smartphone revolution brought about in the consumer world.

Powered by WPeMatico

Robot Safecracking

Robots can crack safes faster than humans — and differently:

So Seidle started looking for shortcuts. First he found that, like many safes, his SentrySafe had some tolerance for error. If the combination includes a 12, for instance, 11 or 13 would work, too. That simple convenience measure meant his bot could try every third number instead of every single number, immediately paring down the total test time to just over four days. Seidle also realized that the bot didn’t actually need to return the dial to its original position before trying every combination. By making attempts in a certain careful order, it could keep two of the three rotors in place, while trying new numbers on just the last, vastly cutting the time to try new combinations to a maximum of four seconds per try. That reduced the maximum bruteforcing time to about one day and 16 hours, or under a day on average.

But Seidle found one more clever trick, this time taking advantage of a design quirk in the safe intended to prevent traditional safecracking. Because the safe has a rod that slips into slots in the three rotors when they’re aligned to the combination’s numbers, a human safecracker can apply light pressure to the safe’s handle, turn its dial, and listen or feel for the moment when that rod slips into those slots. To block that technique, the third rotor of Seidle’s SentrySafe is indented with twelve notches that catch the rod if someone turns the dial while pulling the handle.

Seidle took apart the safe he and his wife had owned for years, and measured those twelve notches. To his surprise, he discovered the one that contained the slot for the correct combination was about a hundredth of an inch narrower than the other eleven. That’s not a difference any human can feel or listen for, but his robot can easily detect it with a few automated measurements that take seconds. That discovery defeated an entire rotor’s worth of combinations, dividing the possible solutions by a factor of 33, and reducing the total cracking time to the robot’s current hour-and-13 minute max.

We’re going to have to start thinking about robot adversaries as we design our security systems.

Powered by WPeMatico

Roombas will Spy on You

The company that sells the Roomba autonomous vacuum wants to sell the data about your home that it collects.

Some questions:

What happens if a Roomba user consents to the data collection and later sells his or her home — especially furnished — and now the buyers of the data have a map of a home that belongs to someone who didn’t consent, Mr. Gidari asked. How long is the data kept? If the house burns down, can the insurance company obtain the data and use it to identify possible causes? Can the police use it after a robbery?

Powered by WPeMatico

US Army Researching Bot Swarms

The US Army Research Agency is funding research into autonomous bot swarms. From the announcement:

The objective of this CRA is to perform enabling basic and applied research to extend the reach, situational awareness, and operational effectiveness of large heterogeneous teams of intelligent systems and Soldiers against dynamic threats in complex and contested environments and provide technical and operational superiority through fast, intelligent, resilient and collaborative behaviors. To achieve this, ARL is requesting proposals that address three key Research Areas (RAs):

RA1: Distributed Intelligence: Establish the theoretical foundations of multi-faceted distributed networked intelligent systems combining autonomous agents, sensors, tactical super-computing, knowledge bases in the tactical cloud, and human experts to acquire and apply knowledge to affect and inform decisions of the collective team.

RA2: Heterogeneous Group Control: Develop theory and algorithms for control of large autonomous teams with varying levels of heterogeneity and modularity across sensing, computing, platforms, and degree of autonomy.

RA3: Adaptive and Resilient Behaviors: Develop theory and experimental methods for heterogeneous teams to carry out tasks under the dynamic and varying conditions in the physical world.

Slashdot thread.

And while we’re on the subject, this is an excellent report on AI and national security.

Powered by WPeMatico

Dubai Deploying Autonomous Robotic Police Cars

It’s hard to tell how much of this story is real and how much is aspirational, but it really is only a matter of time:

About the size of a child’s electric toy car, the driverless vehicles will patrol different areas of the city to boost security and hunt for unusual activity, all the while scanning crowds for potential persons of interest to police and known criminals.

Powered by WPeMatico